BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21167012)

  • 1. Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCT.
    Glover M; Zuber AM; O'Shaughnessy KM
    Cardiovasc Ther; 2011 Feb; 29(1):68-76. PubMed ID: 21167012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights from dysregulation of the thiazide-sensitive WNK/SPAK/NCC pathway in the kidney: Gordon syndrome and thiazide-induced hyponatraemia.
    Glover M; O'Shaughnessy KM
    Clin Exp Pharmacol Physiol; 2013 Dec; 40(12):876-84. PubMed ID: 23683032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPAK and WNK kinases: a new target for blood pressure treatment?
    Glover M; O'shaughnessy KM
    Curr Opin Nephrol Hypertens; 2011 Jan; 20(1):16-22. PubMed ID: 21088576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.
    Nishida H; Sohara E; Nomura N; Chiga M; Alessi DR; Rai T; Sasaki S; Uchida S
    Hypertension; 2012 Oct; 60(4):981-90. PubMed ID: 22949526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.
    Grimm PR; Taneja TK; Liu J; Coleman R; Chen YY; Delpire E; Wade JB; Welling PA
    J Biol Chem; 2012 Nov; 287(45):37673-90. PubMed ID: 22977235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder.
    Sohara E; Uchida S
    Nephrol Dial Transplant; 2016 Sep; 31(9):1417-24. PubMed ID: 26152401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WNK signalling pathways in blood pressure regulation.
    Murthy M; Kurz T; O'Shaughnessy KM
    Cell Mol Life Sci; 2017 Apr; 74(7):1261-1280. PubMed ID: 27815594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4.
    Wilson FH; Kahle KT; Sabath E; Lalioti MD; Rapson AK; Hoover RS; Hebert SC; Gamba G; Lifton RP
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):680-4. PubMed ID: 12515852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters.
    Mercier-Zuber A; O'Shaughnessy KM
    Curr Opin Nephrol Hypertens; 2011 Sep; 20(5):534-40. PubMed ID: 21610494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A SPAK isoform switch modulates renal salt transport and blood pressure.
    McCormick JA; Mutig K; Nelson JH; Saritas T; Hoorn EJ; Yang CL; Rogers S; Curry J; Delpire E; Bachmann S; Ellison DH
    Cell Metab; 2011 Sep; 14(3):352-64. PubMed ID: 21907141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation.
    Chu PY; Cheng CJ; Wu YC; Fang YW; Chau T; Uchida S; Sasaki S; Yang SS; Lin SH
    PLoS One; 2013; 8(9):e72969. PubMed ID: 24039833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone.
    Chiga M; Rai T; Yang SS; Ohta A; Takizawa T; Sasaki S; Uchida S
    Kidney Int; 2008 Dec; 74(11):1403-9. PubMed ID: 18800028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the intricate regulatory network controlling the thiazide-sensitive NaCl cotransporter (NCC).
    Dimke H
    Pflugers Arch; 2011 Dec; 462(6):767-77. PubMed ID: 21927811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal and brain isoforms of WNK3 have opposite effects on NCCT expression.
    Glover M; Zuber AM; O'Shaughnessy KM
    J Am Soc Nephrol; 2009 Jun; 20(6):1314-22. PubMed ID: 19470686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
    Grimm PR; Coleman R; Delpire E; Welling PA
    J Am Soc Nephrol; 2017 Sep; 28(9):2597-2606. PubMed ID: 28442491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The WNK signaling pathway and salt-sensitive hypertension.
    Furusho T; Uchida S; Sohara E
    Hypertens Res; 2020 Aug; 43(8):733-743. PubMed ID: 32286498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension.
    Meor Azlan NF; Koeners MP; Zhang J
    Acta Pharm Sin B; 2021 May; 11(5):1117-1128. PubMed ID: 34094823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II.
    Zeniya M; Sohara E; Kita S; Iwamoto T; Susa K; Mori T; Oi K; Chiga M; Takahashi D; Yang SS; Lin SH; Rai T; Sasaki S; Uchida S
    Hypertension; 2013 Nov; 62(5):872-8. PubMed ID: 24019400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated compensatory network is activated in the absence of NCC phosphorylation.
    Grimm PR; Lazo-Fernandez Y; Delpire E; Wall SM; Dorsey SG; Weinman EJ; Coleman R; Wade JB; Welling PA
    J Clin Invest; 2015 May; 125(5):2136-50. PubMed ID: 25893600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.