These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21167138)

  • 21. Mesencephalic projections of the cochlear nucleus in the frog, Rana esculenta.
    Kulik A; Matesz K; Székely G
    Acta Biol Hung; 1994; 45(2-4):323-35. PubMed ID: 7725825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick.
    Puelles L; Robles C; Martínez-de-la-Torre M; Martínez S
    J Comp Neurol; 1994 Feb; 340(1):98-125. PubMed ID: 8176005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis.
    Lowe DA
    J Comp Neurol; 1986 Mar; 245(4):498-513. PubMed ID: 3517085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sites of origin and patterns of migration of vasotocin/mesotocin neurons in developing brain of the chick.
    Arnold-Aldea SA; Sterritt C
    J Neurobiol; 1996 Sep; 31(1):103-16. PubMed ID: 9120431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurogenesis in the brain auditory pathway of a marsupial, the northern native cat (Dasyurus hallucatus).
    Aitkin L; Nelson J; Farrington M; Swann S
    J Comp Neurol; 1991 Jul; 309(2):250-60. PubMed ID: 1885788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory and lateral line inputs to the midbrain of an aquatic anuran: neuroanatomic studies in Xenopus laevis.
    Edwards CJ; Kelley DB
    J Comp Neurol; 2001 Sep; 438(2):148-62. PubMed ID: 11536185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis.
    Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I
    J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective.
    Wullimann MF; Northcutt RG
    J Comp Neurol; 1990 Jul; 297(4):537-52. PubMed ID: 2384612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonin-immunoreactive neurons in the brain of Eigenmannia lineata (Gymnotiformes, Teleostei).
    Bonn U; König B
    J Hirnforsch; 1990; 31(3):297-306. PubMed ID: 1699996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurogenesis in the vocalization pathway of Xenopus laevis.
    Gorlick DL; Kelley DB
    J Comp Neurol; 1987 Mar; 257(4):614-27. PubMed ID: 3693599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of the brain stem in the rat. IV. Thymidine-radiographic study of the time of origin of neurons in the pontine region.
    Altman J; Bayer SA
    J Comp Neurol; 1980 Dec; 194(4):905-29. PubMed ID: 7204646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The gonadotropin-releasing hormone (GnRH) neuron system of the clawed toad Xenopus laevis.
    Sétáló G; Lázár G; Kozicz T
    Acta Biol Hung; 1994; 45(2-4):427-40. PubMed ID: 7725831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications.
    Zeng S; Zhang X; Peng W; Zuo M
    J Comp Neurol; 2004 Mar; 470(2):192-209. PubMed ID: 14750161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurogenesis of the magnocellular basal forebrain nuclei in the rhesus monkey.
    Kordower JH; Rakic P
    J Comp Neurol; 1990 Jan; 291(4):637-53. PubMed ID: 2329194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reevaluation of midbrain and diencephalic projections to the inferior olive in rat with particular reference to the rubro-olivary pathway.
    Rutherford JG; Anderson WA; Gwyn DG
    J Comp Neurol; 1984 Oct; 229(2):285-300. PubMed ID: 6209303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis.
    Muñoz A; Muñoz M; González A; Ten Donkelaar HJ
    J Comp Neurol; 1995 Dec; 363(2):197-220. PubMed ID: 8642070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes.
    Striedter GF
    J Comp Neurol; 1991 Oct; 312(2):311-31. PubMed ID: 1748736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.