BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2116739)

  • 1. Separation and identification of desferrioxamine and its iron chelating metabolites by high-performance liquid chromatography and fast atom bombardment mass spectrometry: choice of complexing agent and application to biological fluids.
    Singh S; Hider RC; Porter JB
    Anal Biochem; 1990 Jun; 187(2):212-9. PubMed ID: 2116739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrioxamine and its hexadentate iron-chelating metabolites in human post-desferal urine studied by high-performance liquid chromatography and fast atom bombardment mass spectrometry.
    Lehmann WD; Heinrich HC
    Anal Biochem; 1990 Feb; 184(2):219-27. PubMed ID: 2109548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of desferrioxamine and its iron chelating metabolites by high-performance liquid chromatography and simultaneous ultraviolet-visible/radioactive detection.
    Singh S; Mohammed N; Ackerman R; Porter JB; Hider RC
    Anal Biochem; 1992 May; 203(1):116-20. PubMed ID: 1524206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A direct method for quantification of non-transferrin-bound iron.
    Singh S; Hider RC; Porter JB
    Anal Biochem; 1990 May; 186(2):320-3. PubMed ID: 2363505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of desferrioxamine, ferrioxamine and aluminoxamine by post-column derivatization high-performance liquid chromatography. Non-linear calibration resulting from second-order reaction kinetics.
    Kraemer HJ; Breithaupt H
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 710(1-2):191-204. PubMed ID: 9686887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of DTPA, EDTA, and NTA by UV-visible spectrometry and HPLC.
    Laine P; Matilainen R
    Anal Bioanal Chem; 2005 Aug; 382(7):1601-9. PubMed ID: 15971044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an intravenous desferrioxamine mesylate treatment protocol for swine: monitoring of desferrioxamine and metabolites by high-performance liquid chromatography.
    Fisher EA; McLachlan DR; Kruck TP; Mustard RA
    Pharmacology; 1990; 41(5):263-71. PubMed ID: 2092330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E.
    Fernández V; Winkelmann G
    Biometals; 2005 Feb; 18(1):53-62. PubMed ID: 15865410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatography of deferoxamine and ferrioxamine: interference by iron present in the chromatographic system.
    Cramer SM; Nathanael B; Horváth C
    J Chromatogr; 1984 Jul; 295(2):405-11. PubMed ID: 6432830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores.
    Winkelmann G; Schmidtkunz K; Rainey FA
    Biometals; 1996 Jan; 9(1):78-83. PubMed ID: 8574095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ability to determine the desferrioxamine-chelatable iron fractions of nontransferrin-bound iron using HPLC.
    Koba M; Słomka A; Bączek T; Marszałł MP; Zekanowska E
    J Sep Sci; 2013 Feb; 36(4):665-9. PubMed ID: 23355397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of desferrioxamines by Azospirillum irakense: assignment of metabolites by HPLC/electrospray mass spectrometry.
    Winkelmann G; Busch B; Hartmann A; Kirchhof G; Süssmuth R; Jung G
    Biometals; 1999 Sep; 12(3):255-64. PubMed ID: 10581690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical usefulness of iron chelating agents.
    Waxman HS; Brown EB
    Prog Hematol; 1969; 6():338-73. PubMed ID: 4976246
    [No Abstract]   [Full Text] [Related]  

  • 14. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients.
    Lee P; Mohammed N; Marshall L; Abeysinghe RD; Hider RC; Porter JB; Singh S
    Drug Metab Dispos; 1993; 21(4):640-4. PubMed ID: 8104123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction between desferrioxamine and hemin: a potential toxicological implication.
    Lu N; Yi L; Deng Q; Li J; Gao Z; Li H
    Toxicol In Vitro; 2012 Aug; 26(5):732-5. PubMed ID: 22445860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate.
    Hermes-Lima M; Ponka P; Schulman HM
    Biochim Biophys Acta; 2000 Oct; 1523(2-3):154-60. PubMed ID: 11042379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload.
    Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R
    J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples.
    Alberti G; Emma G; Colleoni R; Pesavento M; Nurchi VM; Biesuz R
    Analyst; 2014 Aug; 139(16):3940-8. PubMed ID: 24883429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triphenylphosphonium-desferrioxamine as a candidate mitochondrial iron chelator.
    Alta RYP; Vitorino HA; Goswami D; Terêsa Machini M; Espósito BP
    Biometals; 2017 Oct; 30(5):709-718. PubMed ID: 28770399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the protein cutting reagent iron (S)-1-(p-bromoacetamidobenzyl)ethylenediaminetetraacetate and conjugation to cysteine side chains.
    Greiner DP; Miyake R; Moran JK; Jones AD; Negishi T; Ishihama A; Meares CF
    Bioconjug Chem; 1997; 8(1):44-8. PubMed ID: 9026034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.