BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 2116748)

  • 1. Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability.
    Parker JC; Hernandez LA; Longenecker GL; Peevy K; Johnson W
    Am Rev Respir Dis; 1990 Aug; 142(2):321-8. PubMed ID: 2116748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.
    Dreyfuss D; Saumon G
    Am Rev Respir Dis; 1993 Nov; 148(5):1194-203. PubMed ID: 8239153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung fluid dynamics in awake newborn lambs.
    Bland RD; McMillan DD
    J Clin Invest; 1977 Nov; 60(5):1107-15. PubMed ID: 908754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased microvascular permeability in dog lungs due to high peak airway pressures.
    Parker JC; Townsley MI; Rippe B; Taylor AE; Thigpen J
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1809-16. PubMed ID: 6511554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung overexpansion increases pulmonary microvascular protein permeability in young lambs.
    Carlton DP; Cummings JJ; Scheerer RG; Poulain FR; Bland RD
    J Appl Physiol (1985); 1990 Aug; 69(2):577-83. PubMed ID: 2228868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of changes in airway pressure and the inspiratory volume on the fluid filtration rate and pulmonary artery pressure in isolated rabbit lungs perfused with blood and acellular solution].
    Crespo A; Novoa E; Urich D; Trejo H; Pezzulo A; Sznajder JI; Livia F; Sánchez-de León R
    Invest Clin; 2006 Dec; 47(4):323-35. PubMed ID: 17176901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of myocardial ischemia to increase pulmonary microvascular permeability in dogs.
    Parker JC; Campbell L; Gilchrist S; Longenecker G; Taylor AE
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):691-9. PubMed ID: 6546745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pentoxifylline on hemodynamics, alveolar fluid reabsorption, and pulmonary edema in a model of acute lung injury.
    Seear MD; Hannam VL; Kaapa P; Raj JU; O'Brodovich HM
    Am Rev Respir Dis; 1990 Nov; 142(5):1083-7. PubMed ID: 2240831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of breathing pattern and level of ventilation on pulmonary fluid filtration in dog lung.
    Bshouty Z; Younes M
    Am Rev Respir Dis; 1992 Feb; 145(2 Pt 1):372-6. PubMed ID: 1736744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary oxygen toxicity: increased microvascular permeability to protein in unanesthetized lambs.
    Bressack MA; McMillan DD; Bland RD
    Lymphology; 1979 Sep; 12(3):133-9. PubMed ID: 542018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs.
    Coker PJ; Hernandez LA; Peevy KJ; Adkins K; Parker JC
    Crit Care Med; 1992 May; 20(5):635-40. PubMed ID: 1374003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of interstitial edema on lung lymph flow in goats in the absence of filtration.
    Kambara K; Longworth KE; Serikov VB; Staub NC
    J Appl Physiol (1985); 1992 Mar; 72(3):1142-8. PubMed ID: 1568968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between right duct lymph flow and extravascular lung water in dogs given alpha-naphthylthiourea.
    Pine MB; Beach PM; Cottrell TS; Scola M; Turino GM
    J Clin Invest; 1976 Aug; 58(2):482-92. PubMed ID: 956379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse effects of large tidal volume and low PEEP in canine acid aspiration.
    Corbridge TC; Wood LD; Crawford GP; Chudoba MJ; Yanos J; Sznajder JI
    Am Rev Respir Dis; 1990 Aug; 142(2):311-5. PubMed ID: 2200314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of thromboxane in interleukin 2-induced lung injury in sheep.
    Klausner JM; Paterson IS; Morel NM; Goldman G; Gray AD; Valeri R; Eberlein TJ; Shepro D; Hechtman HB
    Cancer Res; 1989 Jul; 49(13):3542-9. PubMed ID: 2786452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema.
    Colmenero-Ruiz M; Fernández-Mondéjar E; Fernández-Sacristán MA; Rivera-Fernández R; Vazquez-Mata G
    Am J Respir Crit Care Med; 1997 Mar; 155(3):964-70. PubMed ID: 9117033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventilation with positive end-expiratory pressure reduces extravascular lung water and increases lymphatic flow in hydrostatic pulmonary edema.
    Fernández Mondéjar E; Vazquez Mata G; Cárdenas A; Mansilla A; Cantalejo F; Rivera R
    Crit Care Med; 1996 Sep; 24(9):1562-7. PubMed ID: 8797632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats.
    Dreyfuss D; Basset G; Soler P; Saumon G
    Am Rev Respir Dis; 1985 Oct; 132(4):880-4. PubMed ID: 3901844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hemodynamic effects of synchronous and asynchronous independent lung ventilation with different levels of positive end-expiratory pressure and tidal volumes on unilateral lung injury in dogs].
    Bu XN; Cao ZX; Pang BS; Wang S; Wang C
    Zhonghua Jie He He Hu Xi Za Zhi; 2010 Oct; 33(10):766-70. PubMed ID: 21176509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does PEEP facilitate the resolution of extravascular lung water after experimental hydrostatic pulmonary oedema?
    Blomqvist H; Wickerts CJ; Berg B; Frostell C; Jolin A; Hedenstierna G
    Eur Respir J; 1991 Oct; 4(9):1053-9. PubMed ID: 1756838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.