These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2116763)

  • 61. Identification and classification of Listeria by two-dimensional protein mapping.
    Gormon T; Phan-Thanh L
    Res Microbiol; 1995 Feb; 146(2):143-54. PubMed ID: 7652208
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy.
    Rebuffo CA; Schmitt J; Wenning M; von Stetten F; Scherer S
    Appl Environ Microbiol; 2006 Feb; 72(2):994-1000. PubMed ID: 16461640
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Lysogeny of Rhizobium japonicum and the sensitivity of these cultures to phages isolated from soil].
    Moskalenko LN; Rautenshteĭn IaI; Kniazeva VL; Zagor'e IV
    Mikrobiologiia; 1979; 48(2):329-35. PubMed ID: 440166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization by DNA restriction endonuclease analysis of Listeria monocytogenes strains related to the Swiss epidemic of listeriosis.
    Nocera D; Bannerman E; Rocourt J; Jaton-Ogay K; Bille J
    J Clin Microbiol; 1990 Oct; 28(10):2259-63. PubMed ID: 2172285
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Aspects of the epidemiology of human Listeria monocytogenes infections in Britain 1967-1984; the use of serotyping and phage typing.
    McLauchlin J; Audurier A; Taylor AG
    J Med Microbiol; 1986 Dec; 22(4):367-77. PubMed ID: 3098979
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and characteristics of bacteriophages from staphylococci of chicken origin.
    Shimizu A
    Am J Vet Res; 1977 Sep; 38(9):1389-92. PubMed ID: 144452
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Isolation of Vibrio cholerae 0139 phages to develop a phage typing scheme.
    Chakrabarti AK; Ghosh AN; Sarkar BL
    Indian J Med Res; 1997 Jun; 105():254-7. PubMed ID: 9277036
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants.
    Trudelle DM; Bryan DW; Hudson LK; Denes TG
    Food Microbiol; 2019 Dec; 84():103239. PubMed ID: 31421769
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A method for typing Listeria monocytogenes strains by classification of listeriocins and phage receptors.
    Lebek G; Teysseire P; Baumgartner A
    Zentralbl Bakteriol; 1993 Feb; 278(1):58-68. PubMed ID: 8518513
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Establishment of a new bacteriophage set for typing avian staphylococci.
    Shimizu A
    Am J Vet Res; 1977 Oct; 38(10):1601-5. PubMed ID: 145191
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of conventional and reversed phage typing procedures for identification of Listeria spp.
    Estela LA; Sofos JN
    Appl Environ Microbiol; 1993 Feb; 59(2):617-9. PubMed ID: 8434928
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phage typing of Bacillus subtilis and B. thuringiensis.
    Ackermann HW; Azizbekyan RR; Bernier RL; de Barjac H; Saindoux S; Valéro JR; Yu MX
    Res Microbiol; 1995 Oct; 146(8):643-57. PubMed ID: 8584788
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Environmental conditions and serotype affect Listeria monocytogenes susceptibility to phage treatment in a laboratory cheese model.
    Henderson LO; Cabrera-Villamizar LA; Skeens J; Kent D; Murphy S; Wiedmann M; Guariglia-Oropeza V
    J Dairy Sci; 2019 Nov; 102(11):9674-9688. PubMed ID: 31477293
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Typing of Listeria strains by random amplification of polymorphic DNA.
    Mazurier SI; Wernars K
    Res Microbiol; 1992 Jun; 143(5):499-505. PubMed ID: 1448625
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The lytic activity of Yersinia pestis phage P 3d serovar].
    Novosel'tsev NN; Marchenkov VI; Kravchenko AN; Valentsev VE; Tinker LA
    Zh Mikrobiol Epidemiol Immunobiol; 1990 Dec; (12):15-8. PubMed ID: 2099066
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Further results and experiences with phage-typing of Listeria.
    Ortel S
    Acta Microbiol Hung; 1989; 36(2-3):219-24. PubMed ID: 2631509
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phage-typing of Klebsiella strains from Cologne and Wroclaw.
    Hessek AP; Peters G; Byczyńska B; Pulverer G
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1981 Sep; 250(3):296-306. PubMed ID: 7029966
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Taxonomy of the Listeria genus and typing of L. monocytogenes].
    Rocourt J
    Pathol Biol (Paris); 1996 Nov; 44(9):749-56. PubMed ID: 8977897
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of multilocus enzyme electrophoresis (MEE), ribotyping, restriction enzyme analysis (REA) and phage typing for typing of Listeria monocytogenes.
    Nørrung B; Gerner-Smidt P
    Epidemiol Infect; 1993 Aug; 111(1):71-9. PubMed ID: 7688694
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Amplified intergenic locus polymorphism as a basis for bacterial typing of Listeria spp. and Escherichia coli.
    Somer L; Danin-Poleg Y; Diamant E; Gur-Arie R; Palti Y; Kashi Y
    Appl Environ Microbiol; 2005 Jun; 71(6):3144-52. PubMed ID: 15933014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.