These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2116789)

  • 21. Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus.
    Trower MK; Lenstra R; Omer C; Buchholz SE; Sariaslani FS
    Mol Microbiol; 1993 Mar; 7(6):1024-5. PubMed ID: 8483414
    [No Abstract]   [Full Text] [Related]  

  • 22. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial transformation of precocene II: oxidative reactions by Streptomyces griseus.
    Sariaslani FS; McGee LR; Ovenall DW
    Appl Environ Microbiol; 1987 Aug; 53(8):1780-4. PubMed ID: 3116933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single turnover studies with oxy-cytochrome P-450cam.
    Brewer CB; Peterson JA
    Arch Biochem Biophys; 1986 Sep; 249(2):515-21. PubMed ID: 3753015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromogenesis mirabilis in Streptomyces griseus.
    Arai T; Mikami Y
    Appl Microbiol; 1972 Nov; 24(5):768-71. PubMed ID: 4629704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities.
    White RE; McCarthy MB; Egeberg KD; Sligar SG
    Arch Biochem Biophys; 1984 Feb; 228(2):493-502. PubMed ID: 6696444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).
    Funk C; Croteau R
    Plant Physiol; 1993 Apr; 101(4):1231-1237. PubMed ID: 12231778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration.
    Völkel W; Colnot T; Schauer UM; Broschard TH; Dekant W
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):331-8. PubMed ID: 16806338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of streptomycin. Enzymic oxidation of dihydrostreptomycin (6-phosphate) to streptomycin (6-phosphate) with a particulate fraction of Streptomyces griseus.
    Maier S; Grisebach H
    Biochim Biophys Acta; 1979 Aug; 586(2):231-41. PubMed ID: 89869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrite reductase system involved in the terminal oxidation of the Streptomyces griseus respiratory particle.
    Inoue Y
    Biochim Biophys Acta; 1977 Jan; 459(1):88-95. PubMed ID: 401645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-organic chemistry and cytochrome P-450-dependent catalysis.
    Sligar SG; Gelb MH; Heimbrook DC
    Xenobiotica; 1984; 14(1-2):63-86. PubMed ID: 6372267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water oxidation by a cytochrome p450: mechanism and function of the reaction.
    Prasad B; Mah DJ; Lewis AR; Plettner E
    PLoS One; 2013; 8(4):e61897. PubMed ID: 23634216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytochrome P450105D1 (CYP105D1) from Streptomyces griseus: heterologous expression, activity, and activation effects of multiple xenobiotics.
    Taylor M; Lamb DC; Cannell R; Dawson M; Kelly SL
    Biochem Biophys Res Commun; 1999 Oct; 263(3):838-42. PubMed ID: 10512767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new cytochrome P450 belonging to the 107L subfamily is responsible for the efficient hydroxylation of the drug terfenadine by Streptomyces platensis.
    Lombard M; Salard I; Sari MA; Mansuy D; Buisson D
    Arch Biochem Biophys; 2011 Apr; 508(1):54-63. PubMed ID: 21241658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Catalyzed Regio-Selective Demethylation of Colchicine by Streptomyces griseus ATCC 13273.
    Zhang C; Sun X; Xu SH; Yu BY; Zhang J
    Appl Biochem Biotechnol; 2017 Nov; 183(3):1026-1034. PubMed ID: 28455804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of cytochrome P4502B4 (LM2) activity with camphor and linalool monooxygenase electron donors.
    Bernhardt R; Gunsalus IC
    Biochem Biophys Res Commun; 1992 Aug; 187(1):310-7. PubMed ID: 1520313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of an 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from Streptomyces griseus.
    Eker AP; Hessels JK; Meerwaldt R
    Biochim Biophys Acta; 1989 Jan; 990(1):80-6. PubMed ID: 2492438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.