These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670 [TBL] [Abstract][Full Text] [Related]
27. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling). Narasimhulu S Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838 [TBL] [Abstract][Full Text] [Related]
28. Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities. White RE; McCarthy MB; Egeberg KD; Sligar SG Arch Biochem Biophys; 1984 Feb; 228(2):493-502. PubMed ID: 6696444 [TBL] [Abstract][Full Text] [Related]
29. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis). Funk C; Croteau R Plant Physiol; 1993 Apr; 101(4):1231-1237. PubMed ID: 12231778 [TBL] [Abstract][Full Text] [Related]
30. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration. Völkel W; Colnot T; Schauer UM; Broschard TH; Dekant W Toxicol Appl Pharmacol; 2006 Oct; 216(2):331-8. PubMed ID: 16806338 [TBL] [Abstract][Full Text] [Related]
31. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450. Kamachi T; Yoshizawa K J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838 [TBL] [Abstract][Full Text] [Related]
32. Biosynthesis of streptomycin. Enzymic oxidation of dihydrostreptomycin (6-phosphate) to streptomycin (6-phosphate) with a particulate fraction of Streptomyces griseus. Maier S; Grisebach H Biochim Biophys Acta; 1979 Aug; 586(2):231-41. PubMed ID: 89869 [TBL] [Abstract][Full Text] [Related]
33. Nitrite reductase system involved in the terminal oxidation of the Streptomyces griseus respiratory particle. Inoue Y Biochim Biophys Acta; 1977 Jan; 459(1):88-95. PubMed ID: 401645 [TBL] [Abstract][Full Text] [Related]
35. Water oxidation by a cytochrome p450: mechanism and function of the reaction. Prasad B; Mah DJ; Lewis AR; Plettner E PLoS One; 2013; 8(4):e61897. PubMed ID: 23634216 [TBL] [Abstract][Full Text] [Related]
36. Cytochrome P450105D1 (CYP105D1) from Streptomyces griseus: heterologous expression, activity, and activation effects of multiple xenobiotics. Taylor M; Lamb DC; Cannell R; Dawson M; Kelly SL Biochem Biophys Res Commun; 1999 Oct; 263(3):838-42. PubMed ID: 10512767 [TBL] [Abstract][Full Text] [Related]
37. A new cytochrome P450 belonging to the 107L subfamily is responsible for the efficient hydroxylation of the drug terfenadine by Streptomyces platensis. Lombard M; Salard I; Sari MA; Mansuy D; Buisson D Arch Biochem Biophys; 2011 Apr; 508(1):54-63. PubMed ID: 21241658 [TBL] [Abstract][Full Text] [Related]