BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 21168269)

  • 41. Tannin-immobilized mesoporous silica bead (BT-SiO2) as an effective adsorbent of Cr(III) in aqueous solutions.
    Huang X; Liao X; Shi B
    J Hazard Mater; 2010 Jan; 173(1-3):33-9. PubMed ID: 19836129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime.
    Islam M; Patel RK
    J Hazard Mater; 2007 May; 143(1-2):303-10. PubMed ID: 17046155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defluoridation behavior of nanostructured hydroxyapatite synthesized through an ultrasonic and microwave combined technique.
    Poinern GE; Ghosh MK; Ng YJ; Issa TB; Anand S; Singh P
    J Hazard Mater; 2011 Jan; 185(1):29-37. PubMed ID: 21036472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.
    Chai L; Wang Y; Zhao N; Yang W; You X
    Water Res; 2013 Aug; 47(12):4040-9. PubMed ID: 23602616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions.
    Sahu RC; Patel R; Ray BC
    J Hazard Mater; 2010 Jul; 179(1-3):1007-13. PubMed ID: 20456859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modified native cellulose fibers--a novel efficient adsorbent for both fluoride and arsenic.
    Tian Y; Wu M; Liu R; Wang D; Lin X; Liu W; Ma L; Li Y; Huang Y
    J Hazard Mater; 2011 Jan; 185(1):93-100. PubMed ID: 20926189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull.
    Arami M; Limaee NY; Mahmoodi NM; Tabrizi NS
    J Hazard Mater; 2006 Jul; 135(1-3):171-9. PubMed ID: 16442216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water.
    Zhou J; Yang S; Yu J; Shu Z
    J Hazard Mater; 2011 Sep; 192(3):1114-21. PubMed ID: 21719194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle.
    Ma W; Ya FQ; Han M; Wang R
    J Hazard Mater; 2007 May; 143(1-2):296-302. PubMed ID: 17126481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defluoridation from aqueous solution by lanthanum hydroxide.
    Na CK; Park HJ
    J Hazard Mater; 2010 Nov; 183(1-3):512-20. PubMed ID: 20702038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Mar; 152(1):337-46. PubMed ID: 17686579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water.
    Deng S; Liu H; Zhou W; Huang J; Yu G
    J Hazard Mater; 2011 Feb; 186(2-3):1360-6. PubMed ID: 21208743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of fluoride from water by using granular red mud: Batch and column studies.
    Tor A; Danaoglu N; Arslan G; Cengeloglu Y
    J Hazard Mater; 2009 May; 164(1):271-8. PubMed ID: 18799263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Characteristics of fluoride removal by activated iron-manganese nodules].
    Liu Q; Guo HM
    Huan Jing Ke Xue; 2009 Aug; 30(8):2263-70. PubMed ID: 19799285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol from aqueous solutions.
    Erdem M; Yüksel E; Tay T; Cimen Y; Türk H
    J Colloid Interface Sci; 2009 May; 333(1):40-8. PubMed ID: 19217119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters.
    Su Q; Pan B; Pan B; Zhang Q; Zhang W; Lv L; Wang X; Wu J; Zhang Q
    Sci Total Environ; 2009 Oct; 407(21):5471-7. PubMed ID: 19640564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite.
    Hu J; Shao D; Chen C; Sheng G; Ren X; Wang X
    J Hazard Mater; 2011 Jan; 185(1):463-71. PubMed ID: 20932642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue.
    Parida KM; Pradhan AC
    J Hazard Mater; 2010 Jan; 173(1-3):758-64. PubMed ID: 19836880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies.
    Zhang K; Wu S; Wang X; He J; Sun B; Jia Y; Luo T; Meng F; Jin Z; Lin D; Shen W; Kong L; Liu J
    J Colloid Interface Sci; 2015 May; 446():194-202. PubMed ID: 25668780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.
    Chen J; Shu C; Wang N; Feng J; Ma H; Yan W
    J Colloid Interface Sci; 2017 Jun; 495():44-52. PubMed ID: 28189108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.