These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 21168269)

  • 81. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Adsorption kinetics of fluoride on low cost materials.
    Fan X; Parker DJ; Smith MD
    Water Res; 2003 Dec; 37(20):4929-37. PubMed ID: 14604639
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions.
    Hameed BH; Krishni RR; Sata SA
    J Hazard Mater; 2009 Feb; 162(1):305-11. PubMed ID: 18573607
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Development of organovermiculite-based adsorbent for removing anionic dye from aqueous solution.
    Yu X; Wei C; Ke L; Hu Y; Xie X; Wu H
    J Hazard Mater; 2010 Aug; 180(1-3):499-507. PubMed ID: 20466486
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents.
    Camacho LM; Torres A; Saha D; Deng S
    J Colloid Interface Sci; 2010 Sep; 349(1):307-13. PubMed ID: 20566204
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite.
    Mostafa MG; Chen YH; Jean JS; Liu CC; Lee YC
    J Hazard Mater; 2011 Mar; 187(1-3):89-95. PubMed ID: 21282000
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw.
    Daifullah AA; Yakout SM; Elreefy SA
    J Hazard Mater; 2007 Aug; 147(1-2):633-43. PubMed ID: 17314006
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Iron coated pottery granules for arsenic removal from drinking water.
    Dong L; Zinin PV; Cowen JP; Ming LC
    J Hazard Mater; 2009 Sep; 168(2-3):626-32. PubMed ID: 19356847
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Removal of basic dye (methylene blue) from aqueous solution by adsorption using Musa paradisica: a agricultural waste.
    Sonawane GH; Shrivastava VS
    J Environ Sci Eng; 2009 Jan; 51(1):45-52. PubMed ID: 21114153
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.
    Biswas K; Bandhopadhyay D; Ghosh UC
    J Environ Sci Eng; 2008 Apr; 50(2):153-62. PubMed ID: 19295101
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Equilibrium, kinetic and thermodynamic studies of adsorption of fluoride onto plaster of Paris.
    Gopal V; Elango KP
    J Hazard Mater; 2007 Mar; 141(1):98-105. PubMed ID: 16901628
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite.
    Nie Y; Hu C; Kong C
    J Hazard Mater; 2012 Sep; 233-234():194-9. PubMed ID: 22841297
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents.
    Shanableh AM; Elsergany MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(2):223-31. PubMed ID: 23043345
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Isotherm and kinetics study for acrylic acid removal using powdered activated carbon.
    Kumar A; Prasad B; Mishra IM
    J Hazard Mater; 2010 Apr; 176(1-3):774-83. PubMed ID: 20018446
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.
    Ding Z; Fu F; Cheng Z; Lu J; Tang B
    Chemosphere; 2017 Feb; 169():297-307. PubMed ID: 27883915
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Defluoridation of water using neodymium-modified chitosan.
    Yao R; Meng F; Zhang L; Ma D; Wang M
    J Hazard Mater; 2009 Jun; 165(1-3):454-60. PubMed ID: 19046805
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue.
    Nasuha N; Hameed BH; Din AT
    J Hazard Mater; 2010 Mar; 175(1-3):126-32. PubMed ID: 19879046
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions--kinetic and equilibrium study.
    Royer B; Cardoso NF; Lima EC; Vaghetti JC; Simon NM; Calvete T; Veses RC
    J Hazard Mater; 2009 May; 164(2-3):1213-22. PubMed ID: 18930589
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Defluoridation of groundwater using brick powder as an adsorbent.
    Yadav AK; Kaushik CP; Haritash AK; Kansal A; Rani N
    J Hazard Mater; 2006 Feb; 128(2-3):289-93. PubMed ID: 16233952
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Comment on "Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides".
    Fan J; Xu Z; Zheng S
    J Hazard Mater; 2007 Jan; 139(1):175-7. PubMed ID: 16905246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.