BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21168495)

  • 1. CD47 knockout mice exhibit improved recovery from spinal cord injury.
    Myers SA; DeVries WH; Andres KR; Gruenthal MJ; Benton RL; Hoying JB; Hagg T; Whittemore SR
    Neurobiol Dis; 2011 Apr; 42(1):21-34. PubMed ID: 21168495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sildenafil improves epicenter vascular perfusion but not hindlimb functional recovery after contusive spinal cord injury in mice.
    Myers SA; DeVries WH; Gruenthal MJ; Andres KR; Hagg T; Whittemore SR
    J Neurotrauma; 2012 Feb; 29(3):528-38. PubMed ID: 21970599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular Dysfunction Following Multiwalled Carbon Nanotube Exposure Is Mediated by Thrombospondin-1 Receptor CD47.
    Mandler WK; Nurkiewicz TR; Porter DW; Kelley EE; Olfert IM
    Toxicol Sci; 2018 Sep; 165(1):90-99. PubMed ID: 29788500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD47 deficiency improves neurological outcomes of traumatic brain injury in mice.
    Zhao S; Yu Z; Liu Y; Bai Y; Jiang Y; van Leyen K; Yang YG; Lok JM; Whalen MJ; Lo EH; Wang X
    Neurosci Lett; 2017 Mar; 643():125-130. PubMed ID: 27931776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic ablation of transcription repressor Bach1 reduces neural tissue damage and improves locomotor function after spinal cord injury in mice.
    Kanno H; Ozawa H; Dohi Y; Sekiguchi A; Igarashi K; Itoi E
    J Neurotrauma; 2009 Jan; 26(1):31-9. PubMed ID: 19119918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD36 deletion improves recovery from spinal cord injury.
    Myers SA; Andres KR; Hagg T; Whittemore SR
    Exp Neurol; 2014 Jun; 256():25-38. PubMed ID: 24690303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-34a Inhibits Spinal Cord Injury and Blocks Spinal Cord Neuron Apoptosis by Activating Phatidylinositol 3-kinase (PI3K)/AKT Pathway Through Targeting CD47.
    Qi L; Jiang-Hua M; Ge-Liang H; Qing C; Ya-Ming L
    Curr Neurovasc Res; 2019; 16(4):373-381. PubMed ID: 31490756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury.
    Kubota K; Saiwai H; Kumamaru H; Maeda T; Ohkawa Y; Aratani Y; Nagano T; Iwamoto Y; Okada S
    Spine (Phila Pa 1976); 2012 Jul; 37(16):1363-9. PubMed ID: 22322369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting endothelin receptors A and B attenuates the inflammatory response and improves locomotor function following spinal cord injury in mice.
    Guo J; Li Y; He Z; Zhang B; Li Y; Hu J; Han M; Xu Y; Li Y; Gu J; Dai B; Chen Z
    Int J Mol Med; 2014 Jul; 34(1):74-82. PubMed ID: 24756152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD47 gene knockout protects against transient focal cerebral ischemia in mice.
    Jin G; Tsuji K; Xing C; Yang YG; Wang X; Lo EH
    Exp Neurol; 2009 May; 217(1):165-70. PubMed ID: 19233173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD47 Binding on Vascular Endothelial Cells Inhibits IL-17-Mediated Leukocyte Adhesion.
    Soriano-Romaní L; Mir FA; Singh N; Chin I; Hafezi-Moghadam A; Masli S
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury.
    Galvan MD; Luchetti S; Burgos AM; Nguyen HX; Hooshmand MJ; Hamers FP; Anderson AJ
    J Neurosci; 2008 Dec; 28(51):13876-88. PubMed ID: 19091977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury.
    Kim GM; Xu J; Xu J; Song SK; Yan P; Ku G; Xu XM; Hsu CY
    J Neurosci; 2001 Sep; 21(17):6617-25. PubMed ID: 11517251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.
    Terayama R; Bando Y; Murakami K; Kato K; Kishibe M; Yoshida S
    Neuroscience; 2007 Aug; 148(1):175-87. PubMed ID: 17629414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function.
    Koduru SV; Sun BH; Walker JM; Zhu M; Simpson C; Dhodapkar M; Insogna KL
    J Biol Chem; 2018 Sep; 293(39):15055-15069. PubMed ID: 30082316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The absence of CD47 promotes nerve fiber growth from cultured ventral mesencephalic dopamine neurons.
    Marschinke F; Hashemian S; Matozaki T; Oldenborg PA; Strömberg I
    PLoS One; 2012; 7(9):e45218. PubMed ID: 23049778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.