These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21168518)

  • 1. Opposing patterns of neural priming in same-exemplar vs. different-exemplar repetition predict subsequent memory.
    Manelis A; Wheeler ME; Paynter CA; Storey L; Reder LM
    Neuroimage; 2011 Mar; 55(2):763-72. PubMed ID: 21168518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetition related changes in activation and functional connectivity in hippocampus predict subsequent memory.
    Manelis A; Paynter CA; Wheeler ME; Reder LM
    Hippocampus; 2013 Jan; 23(1):53-65. PubMed ID: 22807169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetition suppression and multi-voxel pattern similarity differentially track implicit and explicit visual memory.
    Ward EJ; Chun MM; Kuhl BA
    J Neurosci; 2013 Sep; 33(37):14749-57. PubMed ID: 24027275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Overlap and Cortical-Hippocampal Interactions Predict Subsequent True and False Memory.
    Wing EA; Geib BR; Wang WC; Monge Z; Davis SW; Cabeza R
    J Neurosci; 2020 Feb; 40(9):1920-1930. PubMed ID: 31974208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects.
    Soldan A; Gazes Y; Hilton HJ; Stern Y
    J Cogn Neurosci; 2008 Oct; 20(10):1762-76. PubMed ID: 18370593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separability of abstract-category and specific-exemplar visual object subsystems: evidence from fMRI pattern analysis.
    McMenamin BW; Deason RG; Steele VR; Koutstaal W; Marsolek CJ
    Brain Cogn; 2015 Feb; 93():54-63. PubMed ID: 25528436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identical versus conceptual repetition FN400 and parietal old/new ERP components occur during encoding and predict subsequent memory.
    Griffin M; DeWolf M; Keinath A; Liu X; Reder L
    Brain Res; 2013 May; 1512():68-77. PubMed ID: 23528265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects.
    Soldan A; Habeck C; Gazes Y; Stern Y
    Brain Res; 2010 Jul; 1343():122-34. PubMed ID: 20450898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global familiarity of visual stimuli affects repetition-related neural plasticity but not repetition priming.
    Soldan A; Zarahn E; Hilton HJ; Stern Y
    Neuroimage; 2008 Jan; 39(1):515-26. PubMed ID: 17913513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object identification leads to a conceptual broadening of object representations in lateral prefrontal cortex.
    Gotts SJ; Milleville SC; Martin A
    Neuropsychologia; 2015 Sep; 76():62-78. PubMed ID: 25445775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural pattern similarity across concept exemplars predicts memory after a long delay.
    Bruett H; Calloway RC; Tokowicz N; Coutanche MN
    Neuroimage; 2020 Oct; 219():117030. PubMed ID: 32526388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex.
    Yi DJ; Chun MM
    J Neurosci; 2005 Apr; 25(14):3593-600. PubMed ID: 15814790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual and semantic contributions to repetition priming of environmental sounds.
    De Lucia M; Cocchi L; Martuzzi R; Meuli RA; Clarke S; Murray MM
    Cereb Cortex; 2010 Jul; 20(7):1676-84. PubMed ID: 19906809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments.
    Kim H
    Hum Brain Mapp; 2017 Apr; 38(4):1894-1913. PubMed ID: 28009076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater neural pattern similarity across repetitions is associated with better memory.
    Xue G; Dong Q; Chen C; Lu Z; Mumford JA; Poldrack RA
    Science; 2010 Oct; 330(6000):97-101. PubMed ID: 20829453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forgotten but not gone: FMRI evidence of implicit memory for negative stimuli 24 hours after the initial study episode.
    Kark SM; Slotnick SD; Kensinger EA
    Neuropsychologia; 2020 Jan; 136():107277. PubMed ID: 31783080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural adaptation across viewpoint and exemplar in fusiform cortex.
    Harvey DY; Burgund ED
    Brain Cogn; 2012 Oct; 80(1):33-44. PubMed ID: 22626920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When a thought equals a look: refreshing enhances perceptual memory.
    Yi DJ; Turk-Browne NB; Chun MM; Johnson MK
    J Cogn Neurosci; 2008 Aug; 20(8):1371-80. PubMed ID: 18303973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.
    Xue G; Mei L; Chen C; Lu ZL; Poldrack R; Dong Q
    J Cogn Neurosci; 2011 Jul; 23(7):1624-33. PubMed ID: 20617892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.
    Vuilleumier P; Schwartz S; Duhoux S; Dolan RJ; Driver J
    J Cogn Neurosci; 2005 Aug; 17(8):1245-60. PubMed ID: 16197681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.