BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21168845)

  • 1. Modeling costal cartilage using local material properties with consideration for gross heterogeneities.
    Forman JL; Kent RW
    J Biomech; 2011 Mar; 44(5):910-6. PubMed ID: 21168845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pseudo-elastic effective material property representation of the costal cartilage for use in finite element models of the whole human body.
    Forman JL; de Dios Edel P; Kent RW
    Traffic Inj Prev; 2010 Dec; 11(6):613-22. PubMed ID: 21128192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of the perichondrium to the structural mechanical behavior of the costal-cartilage.
    Forman JL; del Pozo de Dios E; Dalmases CA; Kent RW
    J Biomech Eng; 2010 Sep; 132(9):094501. PubMed ID: 20815649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
    Tripathy S; Berger EJ
    Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indentation stiffness of aging human costal cartilage.
    Lau A; Oyen ML; Kent RW; Murakami D; Torigaki T
    Acta Biomater; 2008 Jan; 4(1):97-103. PubMed ID: 17702680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters.
    Womack W; Ayturk UM; Puttlitz CM
    J Biomech Eng; 2011 Jan; 133(1):011009. PubMed ID: 21186899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties.
    Warner MD; Taylor WR; Clift SE
    Med Eng Phys; 2004 Apr; 26(3):247-9. PubMed ID: 14984846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.
    Papaioannou G; Demetropoulos CK; King YH
    Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of an elastic model of the brain: distortion due to acute epidural hematoma--the role of the intra-ventricular pressure gradient.
    Saberi H; Seddighi AS; Farmanzad F
    Comput Aided Surg; 2007 Mar; 12(2):131-6. PubMed ID: 17487663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.
    Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N
    J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique.
    Julkunen P; Korhonen RK; Nissi MJ; Jurvelin JS
    Phys Med Biol; 2008 May; 53(9):2425-38. PubMed ID: 18421123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of calcification on the structural mechanics of the costal cartilage.
    Forman JL; Kent RW
    Comput Methods Biomech Biomed Engin; 2014; 17(2):94-107. PubMed ID: 22515744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.