These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21168847)

  • 1. Application of a modified linear solvation energy relationship (LSER) model to retention on a butylimidazolium-based column for high performance liquid chromatography.
    Fields PR; Sun Y; Stalcup AM
    J Chromatogr A; 2011 Jan; 1218(3):467-75. PubMed ID: 21168847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase.
    Sun Y; Stalcup AM
    J Chromatogr A; 2006 Sep; 1126(1-2):276-82. PubMed ID: 16854426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of surface confined ionic liquid stationary phases: impact of cation revisited.
    VanMiddlesworth BJ; Stalcup AM
    J Chromatogr A; 2014 Oct; 1364():171-82. PubMed ID: 25218629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of ionizable compounds on high-performance liquid chromatography XI. Global linear solvation energy relationships for neutral and ionizable compounds.
    Espinosa S; Bosch E; Rosés M
    J Chromatogr A; 2002 Feb; 945(1-2):83-96. PubMed ID: 11860147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning.
    Van Meter DS; Sun Y; Parker KM; Stalcup AM
    Anal Bioanal Chem; 2008 Feb; 390(3):897-905. PubMed ID: 18040667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention characteristics of a new butylimidazolium-based stationary phase.
    Sun Y; Cabovska B; Evans CE; Ridgway TH; Stalcup AM
    Anal Bioanal Chem; 2005 Jun; 382(3):728-34. PubMed ID: 15883788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of surface-confined ionic liquid stationary phases: impact of cation and anion identity on retention.
    Van Meter DS; Oliver NJ; Carle AB; Dehm S; Ridgway TH; Stalcup AM
    Anal Bioanal Chem; 2009 Jan; 393(1):283-94. PubMed ID: 18998116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the solvation parameter model or its adaptations adequate to account for ionic interactions when characterizing stationary phases for drug impurity profiling with supercritical fluid chromatography?
    Galea C; West C; Mangelings D; Vander Heyden Y
    Anal Chim Acta; 2016 Jun; 924():9-20. PubMed ID: 27181639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography.
    Wang A; Carr PW
    J Chromatogr A; 2002 Aug; 965(1-2):3-23. PubMed ID: 12236532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel pyridinium bromide surface confined ionic liquid stationary phase for high-performance liquid chromatography under normal phase conditions via linear solvation energy relationships.
    Van Meter DS; Stuart OD; Carle AB; Stalcup AM
    J Chromatogr A; 2008 May; 1191(1-2):67-71. PubMed ID: 18321522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prediction of
    Liu X; Gao W; Liang C; Qiao J; Wang K; Lian H
    Se Pu; 2021 Nov; 39(11):1230-1238. PubMed ID: 34677018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression.
    D'Archivio AA; Maggi MA; Ruggieri F
    Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention mechanism of a cholesterol-coated C18 stationary phase: van't Hoff and Linear Solvation Energy Relationships (LSER) approaches.
    Ogden PB; Coym JW
    J Chromatogr A; 2011 May; 1218(20):2936-43. PubMed ID: 21457990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-column retention prediction in reversed-phase high-performance liquid chromatography by artificial neural network modelling.
    D'Archivio AA; Giannitto A; Maggi MA; Ruggieri F
    Anal Chim Acta; 2012 Mar; 717():52-60. PubMed ID: 22304815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships.
    Al-Haj MA; Haber P; Kaliszan R; Buszewski B; Jezierska M; Chilmonzyk Z
    J Pharm Biomed Anal; 1998 Dec; 18(4-5):721-8. PubMed ID: 9919974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic liquids as stationary phases in gas chromatography--an LSER investigation of six commercial phases and some applications.
    Weber W; Andersson JT
    Anal Bioanal Chem; 2014 Sep; 406(22):5347-58. PubMed ID: 24965162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could linear solvation energy relationships give insights into chiral recognition mechanisms? 1. Pi-pi and charge interaction in the reversed versus the normal phase mode.
    Berthod A; Mitchell CR; Armstrong DW
    J Chromatogr A; 2007 Sep; 1166(1-2):61-9. PubMed ID: 17719054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water. Part II: Model evaluation and benchmarking.
    Egert T; Langowski HC
    Eur J Pharm Sci; 2022 May; 172():106138. PubMed ID: 35122951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.