BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21168873)

  • 1. Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall's plaque, pathogenesis and prophylaxis.
    Reid DG; Jackson GJ; Duer MJ; Rodgers AL
    J Urol; 2011 Feb; 185(2):725-30. PubMed ID: 21168873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confining calcium oxalate crystal growth in a carbonated apatite-coated microfluidic channel to better understand the role of Randall's plaque in kidney stone formation.
    Bourg S; Rakotozandriny K; Lucas IT; Letavernier E; Bonhomme C; Babonneau F; Abou-Hassan A
    Lab Chip; 2024 Mar; 24(7):2017-2024. PubMed ID: 38407354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasts between organic participation in apatite biomineralization in brachiopod shell and vertebrate bone identified by nuclear magnetic resonance spectroscopy.
    Neary MT; Reid DG; Mason MJ; Friscic T; Duer MJ; Cusack M
    J R Soc Interface; 2011 Feb; 8(55):282-8. PubMed ID: 20610423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium oxalate calculi found attached to the renal papilla: Preliminary evidence for early mechanisms in stone formation.
    Williams JC; Matlaga BR; Kim SC; Jackson ME; Sommer AJ; McAteer JA; Lingeman JE; Evan AP
    J Endourol; 2006 Nov; 20(11):885-90. PubMed ID: 17144856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of formation of human calcium oxalate renal stones on Randall's plaque.
    Evan AP; Coe FL; Lingeman JE; Shao Y; Sommer AJ; Bledsoe SB; Anderson JC; Worcester EM
    Anat Rec (Hoboken); 2007 Oct; 290(10):1315-23. PubMed ID: 17724713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Randall's plaque as the origin of calcium oxalate kidney stones.
    Daudon M; Bazin D; Letavernier E
    Urolithiasis; 2015 Jan; 43 Suppl 1():5-11. PubMed ID: 25098906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque.
    Winfree S; Weiler C; Bledsoe SB; Gardner T; Sommer AJ; Evan AP; Lingeman JE; Krambeck AE; Worcester EM; El-Achkar TM; Williams JC
    Urolithiasis; 2021 Apr; 49(2):123-135. PubMed ID: 33026465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome of human calcium kidney stones.
    Canales BK; Anderson L; Higgins L; Ensrud-Bowlin K; Roberts KP; Wu B; Kim IW; Monga M
    Urology; 2010 Oct; 76(4):1017.e13-20. PubMed ID: 20709378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can the microstructure of stones tell us?
    Williams JC; Worcester E; Lingeman JE
    Urolithiasis; 2017 Feb; 45(1):19-25. PubMed ID: 27913855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kidney stone compositions and frequencies in a Norwegian population.
    Kravdal G; Helgø D; Moe MK
    Scand J Urol; 2019; 53(2-3):139-144. PubMed ID: 31070078
    [No Abstract]   [Full Text] [Related]  

  • 11. [Composition of 359 kidney stones from the East region of Algeria].
    Bouslama S; Boutefnouchet A; Hannache B; Djemil T; Kadi A; Dahdouh A; Saka S; Daudon M
    Prog Urol; 2016 Jan; 26(1):41-9. PubMed ID: 26531134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High carbonate level of apatite in kidney stones implies infection, but is it predictive?
    Englert KM; McAteer JA; Lingeman JE; Williams JC
    Urolithiasis; 2013 Oct; 41(5):389-94. PubMed ID: 23881525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive value of kidney stone composition in the detection of metabolic abnormalities.
    Pak CY; Poindexter JR; Adams-Huet B; Pearle MS
    Am J Med; 2003 Jul; 115(1):26-32. PubMed ID: 12867231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuum of mineralization from human renal pyramid to stones on stems.
    Sherer BA; Chen L; Kang M; Shimotake AR; Wiener SV; Chi T; Stoller ML; Ho SP
    Acta Biomater; 2018 Apr; 71():72-85. PubMed ID: 29428569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoscopic evidence of calculus attachment to Randall's plaque.
    Matlaga BR; Williams JC; Kim SC; Kuo RL; Evan AP; Bledsoe SB; Coe FL; Worcester EM; Munch LC; Lingeman JE
    J Urol; 2006 May; 175(5):1720-4; discussion 1724. PubMed ID: 16600740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of bacterial imprints on struvite-containing kidney stones: a structural investigation at the mesoscopic and atomic scale.
    Bazin D; André G; Weil R; Matzen G; Emmanuel V; Carpentier X; Daudon M
    Urology; 2012 Apr; 79(4):786-90. PubMed ID: 22112288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoscopic mapping of renal papillae for Randall's plaques in patients with urinary stone disease.
    Low RK; Stoller ML
    J Urol; 1997 Dec; 158(6):2062-4. PubMed ID: 9366312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Randall's plaques in the pathogenesis of calcium stones.
    Matlaga BR; Coe FL; Evan AP; Lingeman JE
    J Urol; 2007 Jan; 177(1):31-8. PubMed ID: 17161996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Zn content of Randall's plaque: a μ-X-ray fluorescence investigation.
    Carpentier X; Bazin D; Combes C; Mazouyes A; Rouzière S; Albouy PA; Foy E; Daudon M
    J Trace Elem Med Biol; 2011 Jul; 25(3):160-5. PubMed ID: 21763116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helper T-cell signaling and inflammatory pathway lead to formation of calcium phosphate but not calcium oxalate stones on Randall's plaques.
    Taguchi K; Hamamoto S; Okada A; Sugino T; Unno R; Ando R; Gao B; Tozawa K; Kohri K; Yasui T
    Int J Urol; 2019 Jun; 26(6):670-677. PubMed ID: 30919502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.