These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21169220)

  • 21. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus.
    Matsukawa S; Miwata K; Asashima M; Michiue T
    Dev Biol; 2015 Mar; 399(1):164-176. PubMed ID: 25576027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1.
    Schneider M; Schambony A; Wedlich D
    Development; 2010 Dec; 137(23):4073-81. PubMed ID: 21062864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of neural crest development by the formin family protein Daam1.
    Ossipova O; Kerney R; Saint-Jeannet JP; Sokol SY
    Genesis; 2018 Jun; 56(6-7):e23108. PubMed ID: 29673042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest.
    Alkobtawi M; Pla P; Monsoro-Burq AH
    Cell Rep; 2021 Jun; 35(12):109289. PubMed ID: 34161771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development.
    Zhang Z; Shi Y; Zhao S; Li J; Li C; Mao B
    PLoS One; 2014; 9(12):e115165. PubMed ID: 25531524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus.
    Hong CS; Saint-Jeannet JP
    Genesis; 2017 Dec; 55(12):. PubMed ID: 29086464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest.
    Wong TC; Rebbert M; Wang C; Chen X; Heffer A; Zarelli VE; Dawid IB; Zhao H
    Int J Dev Biol; 2016; 60(4-6):159-66. PubMed ID: 27389986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution.
    Hoffman TL; Javier AL; Campeau SA; Knight RD; Schilling TF
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):679-91. PubMed ID: 17724731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved gene regulatory module specifies lateral neural borders across bilaterians.
    Li Y; Zhao D; Horie T; Chen G; Bao H; Chen S; Liu W; Horie R; Liang T; Dong B; Feng Q; Tao Q; Liu X
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):E6352-E6360. PubMed ID: 28716930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. microRNAs associated with early neural crest development in Xenopus laevis.
    Ward NJ; Green D; Higgins J; Dalmay T; Münsterberg A; Moxon S; Wheeler GN
    BMC Genomics; 2018 Jan; 19(1):59. PubMed ID: 29347911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CHD7 cooperates with PBAF to control multipotent neural crest formation.
    Bajpai R; Chen DA; Rada-Iglesias A; Zhang J; Xiong Y; Helms J; Chang CP; Zhao Y; Swigut T; Wysocka J
    Nature; 2010 Feb; 463(7283):958-62. PubMed ID: 20130577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The gene regulatory basis of genetic compensation during neural crest induction.
    Dooley CM; Wali N; Sealy IM; White RJ; Stemple DL; Collins JE; Busch-Nentwich EM
    PLoS Genet; 2019 Jun; 15(6):e1008213. PubMed ID: 31199790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation.
    Gershon TR; Oppenheimer O; Chin SS; Gerald WL
    Neoplasia; 2005 Jun; 7(6):575-84. PubMed ID: 16036108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus.
    Godden AM; Antonaci M; Ward NJ; van der Lee M; Abu-Daya A; Guille M; Wheeler GN
    Dev Biol; 2022 Mar; 483():66-75. PubMed ID: 34968443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development.
    Schille C; Heller J; Schambony A
    BMC Dev Biol; 2016 Jan; 16():1. PubMed ID: 26780949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early acquisition of neural crest competence during hESCs neuralization.
    Curchoe CL; Maurer J; McKeown SJ; Cattarossi G; Cimadamore F; Nilbratt M; Snyder EY; Bronner-Fraser M; Terskikh AV
    PLoS One; 2010 Nov; 5(11):e13890. PubMed ID: 21085480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network.
    Yan B; Neilson KM; Moody SA
    Dev Dyn; 2010 Dec; 239(12):3467-80. PubMed ID: 21069826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis.
    Barnett C; Yazgan O; Kuo HC; Malakar S; Thomas T; Fitzgerald A; Harbour W; Henry JJ; Krebs JE
    Mech Dev; 2012; 129(9-12):324-38. PubMed ID: 22691402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm.
    Hong CS; Park BY; Saint-Jeannet JP
    Development; 2008 Dec; 135(23):3903-10. PubMed ID: 18997112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.