BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 21169372)

  • 21. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A system for detecting high impact-low frequency mutations in primary tumors and metastases.
    Anjanappa M; Hao Y; Simpson ER; Bhat-Nakshatri P; Nelson JB; Tersey SA; Mirmira RG; Cohen-Gadol AA; Saadatzadeh MR; Li L; Fang F; Nephew KP; Miller KD; Liu Y; Nakshatri H
    Oncogene; 2018 Jan; 37(2):185-196. PubMed ID: 28892047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional impact bias reveals cancer drivers.
    Gonzalez-Perez A; Lopez-Bigas N
    Nucleic Acids Res; 2012 Nov; 40(21):e169. PubMed ID: 22904074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High accuracy mutation detection in leukemia on a selected panel of cancer genes.
    Kalender Atak Z; De Keersmaecker K; Gianfelici V; Geerdens E; Vandepoel R; Pauwels D; Porcu M; Lahortiga I; Brys V; Dirks WG; Quentmeier H; Cloos J; Cuppens H; Uyttebroeck A; Vandenberghe P; Cools J; Aerts S
    PLoS One; 2012; 7(6):e38463. PubMed ID: 22675565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Driver gene mutations of non-small-cell lung cancer are rare in primary carcinoids of the lung: NGS study by ion Torrent.
    Armengol G; Sarhadi VK; Rönty M; Tikkanen M; Knuuttila A; Knuutila S
    Lung; 2015 Apr; 193(2):303-8. PubMed ID: 25680416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
    Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I
    Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using common variants to indicate cancer genes.
    Stead LF; Thygesen H; Westhead DR; Rabbitts P
    Int J Cancer; 2015 Jan; 136(1):241-5. PubMed ID: 24798945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks.
    Kalender Atak Z; Imrichova H; Svetlichnyy D; Hulselmans G; Christiaens V; Reumers J; Ceulemans H; Aerts S
    Genome Med; 2017 Aug; 9(1):80. PubMed ID: 28854983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PathScan: a tool for discerning mutational significance in groups of putative cancer genes.
    Wendl MC; Wallis JW; Lin L; Kandoth C; Mardis ER; Wilson RK; Ding L
    Bioinformatics; 2011 Jun; 27(12):1595-602. PubMed ID: 21498403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MADGiC: a model-based approach for identifying driver genes in cancer.
    Korthauer KD; Kendziorski C
    Bioinformatics; 2015 May; 31(10):1526-35. PubMed ID: 25573922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A universal method for the mutational analysis of K-ras and p53 gene in non-small-cell lung cancer using formalin-fixed paraffin-embedded tissue.
    Sarkar FH; Valdivieso M; Borders J; Yao KL; Raval MM; Madan SK; Sreepathi P; Shimoyama R; Steiger Z; Visscher DW
    Diagn Mol Pathol; 1995 Dec; 4(4):266-73. PubMed ID: 8634783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences.
    Kumar S; Warrell J; Li S; McGillivray PD; Meyerson W; Salichos L; Harmanci A; Martinez-Fundichely A; Chan CWY; Nielsen MM; Lochovsky L; Zhang Y; Li X; Lou S; Pedersen JS; Herrmann C; Getz G; Khurana E; Gerstein MB
    Cell; 2020 Mar; 180(5):915-927.e16. PubMed ID: 32084333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets.
    Gao J; Chang MT; Johnsen HC; Gao SP; Sylvester BE; Sumer SO; Zhang H; Solit DB; Taylor BS; Schultz N; Sander C
    Genome Med; 2017 Jan; 9(1):4. PubMed ID: 28115009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.