These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21169431)

  • 1. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting.
    Yamaguchi N; Torii M; Uebayashi Y; Nasu M
    Appl Environ Microbiol; 2011 Feb; 77(4):1536-9. PubMed ID: 21169431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid quantification of bacterial cells in potable water using a simplified microfluidic device.
    Sakamoto C; Yamaguchi N; Yamada M; Nagase H; Seki M; Nasu M
    J Microbiol Methods; 2007 Mar; 68(3):643-7. PubMed ID: 17182141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for the rapid detection of Escherichia coli O157:H7 using antibody-coated microspheres.
    Song B; Yu J; Sun Y; Wang Q; Xu S; Jia Y; Lin S; Zhang Y; Wang C; Zhang Y; Zhang X
    Bioengineered; 2021 Dec; 12(1):392-401. PubMed ID: 33472509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and simple quantification of bacterial cells by using a microfluidic device.
    Sakamoto C; Yamaguchi N; Nasu M
    Appl Environ Microbiol; 2005 Feb; 71(2):1117-21. PubMed ID: 15691978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip.
    Dharmasiri U; Witek MA; Adams AA; Osiri JK; Hupert ML; Bianchi TS; Roelke DL; Soper SA
    Anal Chem; 2010 Apr; 82(7):2844-9. PubMed ID: 20218574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA.
    Zhao Y; Zeng D; Yan C; Chen W; Ren J; Jiang Y; Jiang L; Xue F; Ji D; Tang F; Zhou M; Dai J
    Analyst; 2020 Apr; 145(8):3106-3115. PubMed ID: 32159201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry.
    Tanaka Y; Yamaguchi N; Nasu M
    J Appl Microbiol; 2000 Feb; 88(2):228-36. PubMed ID: 10735990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer.
    Yang L; Wu L; Zhu S; Long Y; Hang W; Yan X
    Anal Chem; 2010 Feb; 82(3):1109-16. PubMed ID: 20039721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid On-Site Monitoring of Bacteria in Freshwater Environments Using a Portable Microfluidic Counting System.
    Yamaguchi N; Fujii Y
    Biol Pharm Bull; 2020; 43(1):87-92. PubMed ID: 31902936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for recovering of planktonic and sessile cells of Escherichia coli O157:H7 from freshwater environment.
    Marucci PL; Cubitto MA
    Environ Monit Assess; 2016 Jul; 188(7):432. PubMed ID: 27344557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device.
    Zordan MD; Grafton MM; Acharya G; Reece LM; Cooper CL; Aronson AI; Park K; Leary JF
    Cytometry A; 2009 Feb; 75(2):155-62. PubMed ID: 19061247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network.
    Mujika M; Arana S; Castaño E; Tijero M; Vilares R; Ruano-López JM; Cruz A; Sainz L; Berganza J
    Biosens Bioelectron; 2009 Jan; 24(5):1253-8. PubMed ID: 18760584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement.
    Wang R; Xu Y; Sors T; Irudayaraj J; Ren W; Wang R
    Mikrochim Acta; 2018 Feb; 185(3):184. PubMed ID: 29594583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria.
    Hao X; Yeh P; Qin Y; Jiang Y; Qiu Z; Li S; Le T; Cao X
    Anal Chim Acta; 2019 May; 1056():96-107. PubMed ID: 30797466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative die-off of Escherichia coli O157:H7 and fecal indicator bacteria in pond water.
    Jenkins MB; Fisher DS; Endale DM; Adams P
    Environ Sci Technol; 2011 Mar; 45(5):1853-8. PubMed ID: 21306148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of bacterial cells based on autofluorescence on a microfluidic platform.
    Bao N; Jagadeesan B; Bhunia AK; Yao Y; Lu C
    J Chromatogr A; 2008 Feb; 1181(1-2):153-8. PubMed ID: 18187141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy.
    Yawata Y; Toda K; Setoyama E; Fukuda J; Suzuki H; Uchiyama H; Nomura N
    J Biosci Bioeng; 2010 Sep; 110(3):377-80. PubMed ID: 20547370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for bacteria detection in aqueous samples.
    Jha AK; Tripathi A; Bose A
    Environ Technol; 2011 Oct; 32(13-14):1661-7. PubMed ID: 22329157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments.
    Wong SY; Paschos A; Gupta RS; Schellhorn HE
    Environ Sci Technol; 2014 Oct; 48(19):11462-70. PubMed ID: 25166281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device.
    Yamaguchi N; Ohba H; Nasu M
    Lett Appl Microbiol; 2006 Dec; 43(6):631-6. PubMed ID: 17083709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.