These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21169439)

  • 1. High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology.
    Norris SJ; Howell JK; Odeh EA; Lin T; Gao L; Edmondson DG
    Appl Environ Microbiol; 2011 Feb; 77(4):1483-92. PubMed ID: 21169439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1.
    Labandeira-Rey M; Skare JT
    Infect Immun; 2001 Jan; 69(1):446-55. PubMed ID: 11119536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between plasmid content and infectivity in Borrelia burgdorferi.
    Purser JE; Norris SJ
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13865-70. PubMed ID: 11106398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi.
    Lawrenz MB; Kawabata H; Purser JE; Norris SJ
    Infect Immun; 2002 Sep; 70(9):4798-804. PubMed ID: 12183522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi.
    Margos G; Hepner S; Mang C; Marosevic D; Reynolds SE; Krebs S; Sing A; Derdakova M; Reiter MA; Fingerle V
    BMC Genomics; 2017 May; 18(1):422. PubMed ID: 28558786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas9-mediated endogenous plasmid loss in Borrelia burgdorferi.
    Takacs CN; Nakajima Y; Haber JE; Jacobs-Wagner C
    PLoS One; 2022; 17(11):e0278151. PubMed ID: 36441794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii.
    Kingry LC; Batra D; Replogle A; Rowe LA; Pritt BS; Petersen JM
    PLoS One; 2016; 11(12):e0168994. PubMed ID: 28030649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56.
    Chen Q; Fischer JR; Benoit VM; Dufour NP; Youderian P; Leong JM
    J Bacteriol; 2008 Dec; 190(24):7885-91. PubMed ID: 18849429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.
    Lin T; Gao L; Zhang C; Odeh E; Jacobs MB; Coutte L; Chaconas G; Philipp MT; Norris SJ
    PLoS One; 2012; 7(10):e47532. PubMed ID: 23133514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vlsE complementation on the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1.
    Lawrenz MB; Wooten RM; Norris SJ
    Infect Immun; 2004 Nov; 72(11):6577-85. PubMed ID: 15501789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Borrelia burgdorferi organisms lacking plasmids 25 and 28-1 are internalized by human blood phagocytes at a rate identical to that of the wild-type strain.
    Al-Robaiy S; Knauer J; Straubinger RK
    Infect Immun; 2005 Sep; 73(9):5547-53. PubMed ID: 16113271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and circular plasmid content in Borrelia burgdorferi clinical isolates.
    Iyer R; Kalu O; Purser J; Norris S; Stevenson B; Schwartz I
    Infect Immun; 2003 Jul; 71(7):3699-706. PubMed ID: 12819050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle.
    Grimm D; Eggers CH; Caimano MJ; Tilly K; Stewart PE; Elias AF; Radolf JD; Rosa PA
    Infect Immun; 2004 Oct; 72(10):5938-46. PubMed ID: 15385497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii.
    Casselli T; Tourand Y; Gura K; Stevenson B; Zückert WR; Brissette CA
    Infect Immun; 2023 Mar; 91(3):e0006123. PubMed ID: 36853005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid requirements for infection of ticks by Borrelia burgdorferi.
    Strother KO; Broadwater A; De Silva A
    Vector Borne Zoonotic Dis; 2005; 5(3):237-45. PubMed ID: 16187892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex PCR as a tool for validating plasmid content of Borrelia burgdorferi.
    Bunikis I; Kutschan-Bunikis S; Bonde M; Bergström S
    J Microbiol Methods; 2011 Aug; 86(2):243-7. PubMed ID: 21605603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primordial origin and diversification of plasmids in Lyme disease agent bacteria.
    Casjens SR; Di L; Akther S; Mongodin EF; Luft BJ; Schutzer SE; Fraser CM; Qiu WG
    BMC Genomics; 2018 Mar; 19(1):218. PubMed ID: 29580205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining plasmids required by Borrelia burgdorferi for colonization of tick vector Ixodes scapularis (Acari: Ixodidae).
    Grimm D; Tilly K; Bueschel DM; Fisher MA; Policastro PF; Gherardini FC; Schwan TG; Rosa PA
    J Med Entomol; 2005 Jul; 42(4):676-84. PubMed ID: 16119559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31.
    Botkin DJ; Abbott AN; Stewart PE; Rosa PA; Kawabata H; Watanabe H; Norris SJ
    Infect Immun; 2006 Dec; 74(12):6690-9. PubMed ID: 17015459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.