These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21169502)

  • 1. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA.
    Johansson M; Ieong KW; Trobro S; Strazewski P; Åqvist J; Pavlov MY; Ehrenberg M
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):79-84. PubMed ID: 21169502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNAs.
    Belitsina NV; Tnalina GZ; Spirin AS
    Biosystems; 1982; 15(3):233-41. PubMed ID: 6753963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.
    Wohlgemuth I; Brenner S; Beringer M; Rodnina MV
    J Biol Chem; 2008 Nov; 283(47):32229-35. PubMed ID: 18809677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereochemical control of ribosomal peptidyltransferase reaction. Role of amino acid side-chain orientation of acceptor substrate.
    Bhuta A; Quiggle K; Ott T; Ringer D; Chládek S
    Biochemistry; 1981 Jan; 20(1):8-15. PubMed ID: 7008835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding.
    Sharma D; Southworth DR; Green R
    RNA; 2004 Jan; 10(1):102-13. PubMed ID: 14681589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome.
    Geggier P; Dave R; Feldman MB; Terry DS; Altman RB; Munro JB; Blanchard SC
    J Mol Biol; 2010 Jun; 399(4):576-95. PubMed ID: 20434456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs.
    Holschuh K; Gassen HG
    J Biol Chem; 1982 Feb; 257(4):1987-92. PubMed ID: 7035457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
    Wurmbach P; Nierhaus KH
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of translocation in ribosomal accuracy. Translocation rates for cognate and noncognate aminoacyl- and peptidyl-tRNAs on Escherichia coli ribosomes.
    Gast FU; Peters F; Pingoud A
    J Biol Chem; 1987 Sep; 262(25):11920-6. PubMed ID: 3305498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA.
    Hornig H; Woolley P; Lührmann R
    J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome protection by tRNA derivatives against inactivation by virginiamycin M: evidence for two types of interaction of tRNA with the donor site of peptidyl transferase.
    Chinali G; Di Giambattista M; Cocito C
    Biochemistry; 1987 Mar; 26(6):1592-7. PubMed ID: 3109469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis.
    Janssen BD; Diner EJ; Hayes CS
    Methods Mol Biol; 2012; 905():291-309. PubMed ID: 22736012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center.
    Rodnina MV
    Curr Opin Struct Biol; 2013 Aug; 23(4):595-602. PubMed ID: 23711800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the esterified amino acid to the binding of aminoacylated tRNAs to the ribosomal P- and A-sites.
    Fahlman RP; Uhlenbeck OC
    Biochemistry; 2004 Jun; 43(23):7575-83. PubMed ID: 15182199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of elongation factor G GTPase activity by the ribosomal state. The effects of initiation factors and differentially bound tRNA, aminoacyl-tRNA, and peptidyl-tRNA.
    Voigt J; Nagel K
    J Biol Chem; 1993 Jan; 268(1):100-6. PubMed ID: 8416917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.