These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2116960)

  • 1. Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants.
    Harkema JR
    Environ Health Perspect; 1990 Apr; 85():231-8. PubMed ID: 2116960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium.
    Harkema JR; Carey SA; Wagner JG
    Toxicol Pathol; 2006; 34(3):252-69. PubMed ID: 16698724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.
    Chamanza R; Wright JA
    J Comp Pathol; 2015 Nov; 153(4):287-314. PubMed ID: 26460093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonneoplastic nasal lesions in rats and mice.
    Monticello TM; Morgan KT; Uraih L
    Environ Health Perspect; 1990 Apr; 85():249-74. PubMed ID: 2200665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Health risks associated with inhaled nasal toxicants.
    Feron VJ; Arts JH; Kuper CF; Slootweg PJ; Woutersen RA
    Crit Rev Toxicol; 2001 May; 31(3):313-47. PubMed ID: 11405443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology.
    Harkema JR
    Toxicol Pathol; 1991; 19(4 Pt 1):321-36. PubMed ID: 1813979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways.
    Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ naphthalene bioactivation and nasal airflow cause region-specific injury patterns in the nasal mucosa of rats exposed to naphthalene by inhalation.
    Lee MG; Phimister A; Morin D; Buckpitt A; Plopper C
    J Pharmacol Exp Ther; 2005 Jul; 314(1):103-10. PubMed ID: 15833892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal lesion development and reversibility in rats exposed to aerosols of dibasic esters.
    Lee KP; Valentine R; Bogdanffy MS
    Toxicol Pathol; 1992; 20(3 Pt 1):376-93. PubMed ID: 1295067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic and neoplastic responses in the nasal passages: future research needs.
    Bonnefoi M; Monticello TM; Morgan KT
    Exp Lung Res; 1991; 17(5):853-68. PubMed ID: 1959500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways.
    DeSesso JM
    Qual Assur; 1993 Sep; 2(3):213-31. PubMed ID: 8137082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of nasal lesions induced in Osborne-Mendel rats and B6C3F1 mice by chronic inhalation of allyl glycidyl ether.
    Renne RA; Brown HR; Jokinen MP
    Toxicol Pathol; 1992; 20(3 Pt 1):416-25. PubMed ID: 1295070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of housing density on nasal pathology of breeding mice housed in individually ventilated cages.
    DiVincenti L; Moorman-White D; Bavlov N; Garner M; Wyatt J
    Lab Anim (NY); 2012 Mar; 41(3):68-76. PubMed ID: 22343459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability.
    Garcia GJ; Schroeter JD; Segal RA; Stanek J; Foureman GL; Kimbell JS
    Inhal Toxicol; 2009 Jun; 21(7):607-18. PubMed ID: 19459775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper respiratory tract lesions in inhalation toxicology.
    Renne RA; Gideon KM; Harbo SJ; Staska LM; Grumbein SL
    Toxicol Pathol; 2007 Jan; 35(1):163-9. PubMed ID: 17325985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology.
    Leong SC; Chen XB; Lee HP; Wang DY
    Rhinology; 2010 Jun; 48(2):139-45. PubMed ID: 20502749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airflow, gas deposition, and lesion distribution in the nasal passages.
    Morgan KT; Monticello TM
    Environ Health Perspect; 1990 Apr; 85():209-18. PubMed ID: 2200663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning model nasal airway resistance into its nasal cavity and velopharyngeal components.
    Smith BE; Fiala KJ; Guyette TW
    Cleft Palate J; 1989 Oct; 26(4):327-30; discussion 331. PubMed ID: 2805351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.