These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 21170444)
1. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Marquis BJ; Liu Z; Braun KL; Haynes CL Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444 [TBL] [Abstract][Full Text] [Related]
2. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Love SA; Haynes CL Anal Bioanal Chem; 2010 Sep; 398(2):677-88. PubMed ID: 20428848 [TBL] [Abstract][Full Text] [Related]
3. Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry. Marquis BJ; McFarland AD; Braun KL; Haynes CL Anal Chem; 2008 May; 80(9):3431-7. PubMed ID: 18341358 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687 [TBL] [Abstract][Full Text] [Related]
5. The effects of co-culture of fibroblasts on mast cell exocytotic release characteristics as evaluated by carbon-fiber microelectrode amperometry. Marquis BJ; Haynes CL Biophys Chem; 2008 Sep; 137(1):63-9. PubMed ID: 18653272 [TBL] [Abstract][Full Text] [Related]
6. Functional assessment of metal oxide nanoparticle toxicity in immune cells. Maurer-Jones MA; Lin YS; Haynes CL ACS Nano; 2010 Jun; 4(6):3363-73. PubMed ID: 20481555 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the effects of immunotoxicants using carbon fiber microelectrode amperometry. Marquis BJ; Haynes CL Anal Bioanal Chem; 2010 Dec; 398(7-8):2979-85. PubMed ID: 20953775 [TBL] [Abstract][Full Text] [Related]
8. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Farkas J; Christian P; Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV Aquat Toxicol; 2010 Jan; 96(1):44-52. PubMed ID: 19853932 [TBL] [Abstract][Full Text] [Related]
9. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575 [TBL] [Abstract][Full Text] [Related]
10. Silver and gold nanoparticles in plants: sites for the reduction to metal. Beattie IR; Haverkamp RG Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658 [TBL] [Abstract][Full Text] [Related]
11. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode. Adams KL; Jena BK; Percival SJ; Zhang B Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175 [TBL] [Abstract][Full Text] [Related]
13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
14. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration. Marquis BJ; Maurer-Jones MA; Braun KL; Haynes CL Analyst; 2009 Nov; 134(11):2293-300. PubMed ID: 19838418 [TBL] [Abstract][Full Text] [Related]
15. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Vinod VT; Saravanan P; Sreedhar B; Devi DK; Sashidhar RB Colloids Surf B Biointerfaces; 2011 Apr; 83(2):291-8. PubMed ID: 21185161 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):374-81. PubMed ID: 19324587 [TBL] [Abstract][Full Text] [Related]
17. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456 [TBL] [Abstract][Full Text] [Related]
18. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure. Love SA; Liu Z; Haynes CL Analyst; 2012 Jul; 137(13):3004-10. PubMed ID: 22382603 [TBL] [Abstract][Full Text] [Related]
19. Surface charge of gold nanoparticles mediates mechanism of toxicity. Schaeublin NM; Braydich-Stolle LK; Schrand AM; Miller JM; Hutchison J; Schlager JJ; Hussain SM Nanoscale; 2011 Feb; 3(2):410-20. PubMed ID: 21229159 [TBL] [Abstract][Full Text] [Related]