BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21170452)

  • 1. In situ evaluation of lipase performances through dynamic asymmetric cyanohydrin resolution.
    Sakulsombat M; Vongvilai P; Ramström O
    Org Biomol Chem; 2011 Feb; 9(4):1112-7. PubMed ID: 21170452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic kinetic resolution of 1,3-dihydro-2H-isoindole-1-carboxylic acid methyl ester: asymmetric transformations toward isoindoline carbamates.
    Morán-Ramallal R; Gotor-Fernández V; Laborda P; Sayago FJ; Cativiela C; Gotor V
    Org Lett; 2012 Apr; 14(7):1696-9. PubMed ID: 22417293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Racemase activity of B. cepacia lipase leads to dual-function asymmetric dynamic kinetic resolution of α-aminonitriles.
    Vongvilai P; Linder M; Sakulsombat M; Svedendahl Humble M; Berglund P; Brinck T; Ramström O
    Angew Chem Int Ed Engl; 2011 Jul; 50(29):6592-5. PubMed ID: 21633990
    [No Abstract]   [Full Text] [Related]  

  • 6. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemoenzymatic asymmetric synthesis of optically active pentane-1,5-diamine fragments by means of lipase-catalyzed desymmetrization transformations.
    Ríos-Lombardía N; Busto E; Gotor-Fernández V; Gotor V
    J Org Chem; 2011 Jul; 76(14):5709-18. PubMed ID: 21627134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic asymmetric multicomponent resolution: lipase-mediated amidation of a double dynamic covalent system.
    Vongvilai P; Ramström O
    J Am Chem Soc; 2009 Oct; 131(40):14419-25. PubMed ID: 19807186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1161-8. PubMed ID: 21822657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins.
    Mine Y; Zhang L; Fukunaga K; Sugimura Y
    Biotechnol Lett; 2005 Mar; 27(6):383-8. PubMed ID: 15834802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient regioselective synthesis of 3'-O-crotonylfloxuridine catalysed by Pseudomonas cepacia lipase.
    Zhao Z; Zong M; Li N
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):45-51. PubMed ID: 18373494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a lipase as a high-throughput screening method for measuring the enantiomeric excess of allylic acetates.
    Onaran MB; Seto CT
    J Org Chem; 2003 Oct; 68(21):8136-41. PubMed ID: 14535795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective synthesis of imperanene via enzymatic asymmetrization of an intermediary 1,3-diol.
    Carr JA; Bisht KS
    Org Lett; 2004 Sep; 6(19):3297-300. PubMed ID: 15355036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic combinatorial resolution: direct asymmetric lipase-mediated screening of a dynamic nitroaldol library.
    Vongvilai P; Angelin M; Larsson R; Ramström O
    Angew Chem Int Ed Engl; 2007; 46(6):948-50. PubMed ID: 17171748
    [No Abstract]   [Full Text] [Related]  

  • 17. Chemoenzymatic dynamic kinetic resolution.
    Pàmies O; Bäckvall JE
    Trends Biotechnol; 2004 Mar; 22(3):130-5. PubMed ID: 15036863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates.
    Ema T; Kamata S; Takeda M; Nakano Y; Sakai T
    Chem Commun (Camb); 2010 Aug; 46(30):5440-2. PubMed ID: 20383389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic asymmetric hemithioacetal transformation by lipase-catalyzed γ-lactonization: in situ tandem formation of 1,3-oxathiolan-5-one derivatives.
    Sakulsombat M; Zhang Y; Ramström O
    Chemistry; 2012 May; 18(20):6129-32. PubMed ID: 22473668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double parallel dynamic resolution through lipase-catalyzed asymmetric transformation.
    Zhang Y; Hu L; Ramström O
    Chem Commun (Camb); 2013 Mar; 49(18):1805-7. PubMed ID: 23348957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.