BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21170452)

  • 21. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state.
    Ema T; Nakano Y; Yoshida D; Kamata S; Sakai T
    Org Biomol Chem; 2012 Aug; 10(31):6299-308. PubMed ID: 22710791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase.
    Busto E; Gotor-Fernández V; Gotor V
    Nat Protoc; 2006; 1(4):2061-7. PubMed ID: 17487195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remote interactions explain the unusual regioselectivity of lipase from Pseudomonas cepacia toward the secondary hydroxyl of 2'-deoxynucleosides.
    Lavandera I; Fernández S; Magdalena J; Ferrero M; Grewal H; Savile CK; Kazlauskas RJ; Gotor V
    Chembiochem; 2006 Apr; 7(4):693-8. PubMed ID: 16491501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regioselectivity-reversal in acylation of 6-azauridine catalyzed by Burkholderia cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Biotechnol Lett; 2012 Jan; 34(1):55-9. PubMed ID: 21898129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation.
    Mathpati AC; Vyas VK; Bhanage BM
    J Biotechnol; 2017 Nov; 262():1-10. PubMed ID: 28958793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of novel spiro[2.3]hexane carbocyclic nucleosides via enzymatic resolution.
    Bondada L; Gumina G; Nair R; Ning XH; Schinazi RF; Chu CK
    Org Lett; 2004 Jul; 6(15):2531-4. PubMed ID: 15255683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creation of novel enantioselective lipases by SIMPLEX.
    Koga Y; Yamane T; Nakano H
    Methods Mol Biol; 2007; 375():165-81. PubMed ID: 17634602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot synthesis of optically active allyl esters via lipase-vanadium combo catalysis.
    Akai S; Hanada R; Fujiwara N; Kita Y; Egi M
    Org Lett; 2010 Nov; 12(21):4900-3. PubMed ID: 20936813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic parallel kinetic resolution of mixtures of D/L 2'-deoxy and ribonucleosides: an approach for the isolation of β-L-nucleosides.
    Martínez-Montero S; Fernández S; Sanghvi YS; Gotor V; Ferrero M
    J Org Chem; 2010 Oct; 75(19):6605-13. PubMed ID: 20828182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-line low-volume transesterification-based assay for immobilized lipases.
    Urban PL; Goodall DM; Bergström ET; Bruce NC
    J Biotechnol; 2006 Dec; 126(4):508-18. PubMed ID: 16793159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Straightforward synthesis of enantiopure 2,3-dihydrobenzofurans by a sequential stereoselective biotransformation and chemical intramolecular cyclization.
    Mangas-Sánchez J; Busto E; Gotor-Fernández V; Gotor V
    Org Lett; 2010 Aug; 12(15):3498-501. PubMed ID: 20670014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First isolation of disubstituted cis-5,6-dihydro-1,10-phenanthrolines. Lipase-mediated resolution of cis- and trans-phenoxy alcohol isomers and assignment of absolute stereochemistry via CD and NMR spectroscopy.
    Kohler L; Schoffers E; Driscoll E; Zeller M; Schmiesing C
    Chirality; 2012 Mar; 24(3):245-51. PubMed ID: 22253063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
    Ema T; Fujii T; Ozaki M; Korenaga T; Sakai T
    Chem Commun (Camb); 2005 Oct; (37):4650-1. PubMed ID: 16175280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study.
    Luić M; Tomić S; Lescić I; Ljubović E; Sepac D; Sunjić V; Vitale L; Saenger W; Kojic-Prodić B
    Eur J Biochem; 2001 Jul; 268(14):3964-73. PubMed ID: 11453990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemoenzymatic dynamic kinetic resolution of acyloins.
    Odman P; Wessjohann LA; Bornscheuer UT
    J Org Chem; 2005 Nov; 70(23):9551-5. PubMed ID: 16268632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing the enantioselectivity of lipase in transesterification by substrate matching: an enzyme memory based approach.
    Lee D; Choi YK; Kim MJ
    Org Lett; 2000 Aug; 2(16):2553-5. PubMed ID: 10956545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipase-catalyzed asymmetric synthesis of oxathiazinanones through dynamic covalent kinetic resolution.
    Hu L; Zhang Y; Ramström O
    Org Biomol Chem; 2014 Jun; 12(22):3572-5. PubMed ID: 24759850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases.
    Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K
    Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K; Seelan S
    J Biosci Bioeng; 2010 Jun; 109(6):615-7. PubMed ID: 20471602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.