BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2117062)

  • 1. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids.
    Kang YS; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 Feb; 13(2):158-63. PubMed ID: 2117062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier.
    Kang YS; Terasaki T; Ohnishi T; Tsuji A
    J Pharmacobiodyn; 1990 Jun; 13(6):353-60. PubMed ID: 2231266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysfunction of choline transport system through blood-brain barrier in stroke-prone spontaneously hypertensive rats.
    Kang YS; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 Jan; 13(1):10-9. PubMed ID: 2341966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells.
    Terasaki T; Takakuwa S; Moritani S; Tsuji A
    J Pharmacol Exp Ther; 1991 Sep; 258(3):932-7. PubMed ID: 1890627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vitro evidence for carrier-mediated uptake of acidic drugs by isolated bovine brain capillaries.
    Terasaki T; Kang YS; Ohnishi T; Tsuji A
    J Pharm Pharmacol; 1991 Mar; 43(3):172-6. PubMed ID: 1675273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.
    Takanaga H; Tamai I; Tsuji A
    J Pharm Pharmacol; 1994 Jul; 46(7):567-70. PubMed ID: 7996384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies.
    Kido Y; Tamai I; Okamoto M; Suzuki F; Tsuji A
    Pharm Res; 2000 Jan; 17(1):55-62. PubMed ID: 10714609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier.
    Tsuji A; Saheki A; Tamai I; Terasaki T
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1085-90. PubMed ID: 8263769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina.
    Hosoya K; Kondo T; Tomi M; Takanaga H; Ohtsuki S; Terasaki T
    Pharm Res; 2001 Dec; 18(12):1669-76. PubMed ID: 11785685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles.
    Simanjuntak MT; Terasaki T; Tamai I; Tsuji A
    J Pharmacobiodyn; 1991 Sep; 14(9):501-8. PubMed ID: 1779404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier transport of reduced folic acid.
    Wu D; Pardridge WM
    Pharm Res; 1999 Mar; 16(3):415-9. PubMed ID: 10213373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence of histidine affinity for blood-brain barrier carrier transport systems for neutral and cationic amino acids.
    Oldendorf WH; Crane PD; Braun LD; Gosschalk EA; Diamond JM
    J Neurochem; 1988 Mar; 50(3):857-61. PubMed ID: 3339359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased brain uptake and brain to blood efflux transport of 14C-GABA in spontaneously hypertensive rats.
    Al-Awadi M; Pavlik A; Al-Sarraf H
    Life Sci; 2006 Jul; 79(9):847-53. PubMed ID: 16616765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline.
    Takanaga H; Tokuda N; Ohtsuki S; Hosoya K; Terasaki T
    Mol Pharmacol; 2002 Jun; 61(6):1289-96. PubMed ID: 12021389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of alpha-keto analogues of amino acids across blood-brain barrier in rats.
    Conn AR; Steele RD
    Am J Physiol; 1982 Oct; 243(4):E272-7. PubMed ID: 6751096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased susceptibility to osmotic disruption of the blood-brain barrier in chronic hypertension.
    Tamaki K; Sadoshima S; Heistad DD
    Hypertension; 1984; 6(5):633-8. PubMed ID: 6500670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faulty induction of blood-brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats.
    Yamagata K; Tagami M; Nara Y; Fujino H; Kubota A; Numano F; Kato T; Yamori Y
    Clin Exp Pharmacol Physiol; 1997; 24(9-10):686-91. PubMed ID: 9315370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of alpha-keto acid transport across blood-brain barrier in rats.
    Conn AR; Fell DI; Steele RD
    Am J Physiol; 1983 Sep; 245(3):E253-60. PubMed ID: 6614164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique.
    Yamazaki M; Fukuoka H; Nagata O; Kato H; Ito Y; Terasaki T; Tsuji A
    Biol Pharm Bull; 1994 May; 17(5):676-9. PubMed ID: 7920432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.