These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2117062)

  • 1. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids.
    Kang YS; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 Feb; 13(2):158-63. PubMed ID: 2117062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier.
    Kang YS; Terasaki T; Ohnishi T; Tsuji A
    J Pharmacobiodyn; 1990 Jun; 13(6):353-60. PubMed ID: 2231266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysfunction of choline transport system through blood-brain barrier in stroke-prone spontaneously hypertensive rats.
    Kang YS; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 Jan; 13(1):10-9. PubMed ID: 2341966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells.
    Terasaki T; Takakuwa S; Moritani S; Tsuji A
    J Pharmacol Exp Ther; 1991 Sep; 258(3):932-7. PubMed ID: 1890627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vitro evidence for carrier-mediated uptake of acidic drugs by isolated bovine brain capillaries.
    Terasaki T; Kang YS; Ohnishi T; Tsuji A
    J Pharm Pharmacol; 1991 Mar; 43(3):172-6. PubMed ID: 1675273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.
    Takanaga H; Tamai I; Tsuji A
    J Pharm Pharmacol; 1994 Jul; 46(7):567-70. PubMed ID: 7996384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies.
    Kido Y; Tamai I; Okamoto M; Suzuki F; Tsuji A
    Pharm Res; 2000 Jan; 17(1):55-62. PubMed ID: 10714609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier.
    Tsuji A; Saheki A; Tamai I; Terasaki T
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1085-90. PubMed ID: 8263769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina.
    Hosoya K; Kondo T; Tomi M; Takanaga H; Ohtsuki S; Terasaki T
    Pharm Res; 2001 Dec; 18(12):1669-76. PubMed ID: 11785685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles.
    Simanjuntak MT; Terasaki T; Tamai I; Tsuji A
    J Pharmacobiodyn; 1991 Sep; 14(9):501-8. PubMed ID: 1779404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier transport of reduced folic acid.
    Wu D; Pardridge WM
    Pharm Res; 1999 Mar; 16(3):415-9. PubMed ID: 10213373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence of histidine affinity for blood-brain barrier carrier transport systems for neutral and cationic amino acids.
    Oldendorf WH; Crane PD; Braun LD; Gosschalk EA; Diamond JM
    J Neurochem; 1988 Mar; 50(3):857-61. PubMed ID: 3339359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased brain uptake and brain to blood efflux transport of 14C-GABA in spontaneously hypertensive rats.
    Al-Awadi M; Pavlik A; Al-Sarraf H
    Life Sci; 2006 Jul; 79(9):847-53. PubMed ID: 16616765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline.
    Takanaga H; Tokuda N; Ohtsuki S; Hosoya K; Terasaki T
    Mol Pharmacol; 2002 Jun; 61(6):1289-96. PubMed ID: 12021389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of alpha-keto analogues of amino acids across blood-brain barrier in rats.
    Conn AR; Steele RD
    Am J Physiol; 1982 Oct; 243(4):E272-7. PubMed ID: 6751096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased susceptibility to osmotic disruption of the blood-brain barrier in chronic hypertension.
    Tamaki K; Sadoshima S; Heistad DD
    Hypertension; 1984; 6(5):633-8. PubMed ID: 6500670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faulty induction of blood-brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats.
    Yamagata K; Tagami M; Nara Y; Fujino H; Kubota A; Numano F; Kato T; Yamori Y
    Clin Exp Pharmacol Physiol; 1997; 24(9-10):686-91. PubMed ID: 9315370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of alpha-keto acid transport across blood-brain barrier in rats.
    Conn AR; Fell DI; Steele RD
    Am J Physiol; 1983 Sep; 245(3):E253-60. PubMed ID: 6614164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique.
    Yamazaki M; Fukuoka H; Nagata O; Kato H; Ito Y; Terasaki T; Tsuji A
    Biol Pharm Bull; 1994 May; 17(5):676-9. PubMed ID: 7920432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.