These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21170911)

  • 1. Modelling competing risks data with missing cause of failure.
    Bakoyannis G; Siannis F; Touloumi G
    Stat Med; 2010 Dec; 29(30):3172-85. PubMed ID: 21170911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.
    Geskus RB
    Biometrics; 2011 Mar; 67(1):39-49. PubMed ID: 20377575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical modelling: Analysis of competing risks data with missing causes of failure.
    Nicolaie MA; van Houwelingen HC; Putter H
    Stat Methods Med Res; 2015 Dec; 24(6):891-908. PubMed ID: 22179822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiparametric competing risks regression under interval censoring using the R package intccr.
    Park J; Bakoyannis G; Yiannoutsos CT
    Comput Methods Programs Biomed; 2019 May; 173():167-176. PubMed ID: 31046992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure.
    Moreno-Betancur M; Rey G; Latouche A
    Biometrics; 2015 Jun; 71(2):498-507. PubMed ID: 25761785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missing data strategies for time-varying confounders in comparative effectiveness studies of non-missing time-varying exposures and right-censored outcomes.
    Desai M; Montez-Rath ME; Kapphahn K; Joyce VR; Mathur MB; Garcia A; Purington N; Owens DK
    Stat Med; 2019 Jul; 38(17):3204-3220. PubMed ID: 31099433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure.
    Nevo D; Nishihara R; Ogino S; Wang M
    Lifetime Data Anal; 2018 Jul; 24(3):425-442. PubMed ID: 28779227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiparametric regression and risk prediction with competing risks data under missing cause of failure.
    Bakoyannis G; Zhang Y; Yiannoutsos CT
    Lifetime Data Anal; 2020 Oct; 26(4):659-684. PubMed ID: 31982977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods of competing risks flexible parametric modeling for estimation of the risk of the first disease among HIV infected men.
    Nouri S; Mahmoudi M; Mohammad K; Mansournia MA; Yaseri M; Akhtar-Danesh N
    BMC Med Res Methodol; 2020 Jan; 20(1):17. PubMed ID: 31996148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing risks analysis with missing cause-of-failure-penalized likelihood estimation of cause-specific Cox models.
    Lô SN; Ma J; Manuguerra M; Moreno-Betancur M; Scolyer RA; Thompson JF
    Stat Methods Med Res; 2022 May; 31(5):978-994. PubMed ID: 35037794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple imputation methods for nonparametric inference on cumulative incidence with missing cause of failure.
    Lee M; Dignam JJ; Han J
    Stat Med; 2014 Nov; 33(26):4605-26. PubMed ID: 25043107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Missing covariates in competing risks analysis.
    Bartlett JW; Taylor JM
    Biostatistics; 2016 Oct; 17(4):751-63. PubMed ID: 27179002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Absolute Risk of Cardiovascular Disease and Other Events: Issues With the Use of Multiple Fine-Gray Subdistribution Hazard Models.
    Austin PC; Putter H; Lee DS; Steyerberg EW
    Circ Cardiovasc Qual Outcomes; 2022 Feb; 15(2):e008368. PubMed ID: 35098725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample size calculations in the presence of competing risks.
    Latouche A; Porcher R
    Stat Med; 2007 Dec; 26(30):5370-80. PubMed ID: 17955563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical methods for competing risks data: a review.
    Bakoyannis G; Touloumi G
    Stat Methods Med Res; 2012 Jun; 21(3):257-72. PubMed ID: 21216803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frailty modeling for clustered competing risks data with missing cause of failure.
    Lee M; Ha ID; Lee Y
    Stat Methods Med Res; 2017 Feb; 26(1):356-373. PubMed ID: 25125452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kidney Graft Failure and Patient Survival Modelling Based on Competing Risks Under Nonproportional Hazards.
    Valenta Z; Skrabaka D; Owczarek AJ; Kolonko A; Król R; Więcek A; Ziaja J
    Transplant Proc; 2022 May; 54(4):940-947. PubMed ID: 35450721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiparametric marginal regression for clustered competing risks data with missing cause of failure.
    Zhou W; Bakoyannis G; Zhang Y; Yiannoutsos CT
    Biostatistics; 2023 Jul; 24(3):795-810. PubMed ID: 35411923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-sample adjustments in variance estimators for clustered competing risks regression.
    Chen X; Li F
    Stat Med; 2022 Jun; 41(14):2645-2664. PubMed ID: 35288959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric mixture models to evaluate and summarize hazard ratios in the presence of competing risks with time-dependent hazards and delayed entry.
    Lau B; Cole SR; Gange SJ
    Stat Med; 2011 Mar; 30(6):654-65. PubMed ID: 21337360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.