BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21171097)

  • 1. Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis.
    Adams CM; Suneja M; Dudley-Javoroski S; Shields RK
    Muscle Nerve; 2011 Jan; 43(1):65-75. PubMed ID: 21171097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury.
    Petrie MA; Suneja M; Faidley E; Shields RK
    PLoS One; 2014; 9(12):e115791. PubMed ID: 25531450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    J Neurophysiol; 2006 Apr; 95(4):2380-90. PubMed ID: 16407424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats.
    Liu M; Stevens-Lapsley JE; Jayaraman A; Ye F; Conover C; Walter GA; Bose P; Thompson FJ; Borst SE; Vandenborne K
    Eur J Appl Physiol; 2010 Jul; 109(4):709-20. PubMed ID: 20213470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
    Cole KR; Dudley-Javoroski S; Shields RK
    J Spinal Cord Med; 2019 Sep; 42(5):562-570. PubMed ID: 29923814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output.
    Duffell LD; Donaldson Nde N; Perkins TA; Rushton DN; Hunt KJ; Kakebeeke TH; Newham DJ
    Muscle Nerve; 2008 Oct; 38(4):1304-11. PubMed ID: 18816613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial.
    Gorgey AS; Khalil RE; Davis JC; Carter W; Gill R; Rivers J; Khan R; Goetz LL; Castillo T; Lavis T; Sima AP; Lesnefsky EJ; Cardozo CC; Adler RA
    Trials; 2019 Aug; 20(1):526. PubMed ID: 31443727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats.
    Dupont-Versteegden EE; Houlé JD; Dennis RA; Zhang J; Knox M; Wagoner G; Peterson CA
    Muscle Nerve; 2004 Jan; 29(1):73-81. PubMed ID: 14694501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle.
    Petrie M; Suneja M; Shields RK
    J Appl Physiol (1985); 2015 Mar; 118(6):723-31. PubMed ID: 25635001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury.
    Gorgey AS; Graham ZA; Bauman WA; Cardozo C; Gater DR
    J Spinal Cord Med; 2017 Jul; 40(4):439-448. PubMed ID: 27735783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury.
    Erickson ML; Ryan TE; Backus D; McCully KK
    Muscle Nerve; 2017 May; 55(5):669-675. PubMed ID: 27576602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury.
    Crameri RM; Weston A; Climstein M; Davis GM; Sutton JR
    Scand J Med Sci Sports; 2002 Oct; 12(5):316-22. PubMed ID: 12383078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration?
    Kern H; Boncompagni S; Rossini K; Mayr W; Fanò G; Zanin ME; Podhorska-Okolow M; Protasi F; Carraro U
    J Neuropathol Exp Neurol; 2004 Sep; 63(9):919-31. PubMed ID: 15453091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation.
    Baldi JC; Jackson RD; Moraille R; Mysiw WJ
    Spinal Cord; 1998 Jul; 36(7):463-9. PubMed ID: 9670381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Signature of MicroRNA Dysregulation in Muscle Paralyzed by Spinal Cord Injury Includes Downregulation of MicroRNAs that Target Myostatin Signaling.
    De Gasperi R; Graham ZA; Harlow LM; Bauman WA; Qin W; Cardozo CP
    PLoS One; 2016; 11(12):e0166189. PubMed ID: 27907012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electrical stimulation leg training during the acute phase of spinal cord injury: a pilot study.
    Crameri RM; Weston AR; Rutkowski S; Middleton JW; Davis GM; Sutton JR
    Eur J Appl Physiol; 2000 Nov; 83(4 -5):409-15. PubMed ID: 11138583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury.
    Gorgey AS; Timmons MK; Dolbow DR; Bengel J; Fugate-Laus KC; Michener LA; Gater DR
    Eur J Appl Physiol; 2016 Jun; 116(6):1231-44. PubMed ID: 27155846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.