BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21171441)

  • 1. [The effect of hypoxic preconditioning on myocardium energy metabolism].
    Wu CL; Lin LZ; Lu Z; Huang YR; Zhuang JG; Zhou ZN
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb; 17(1):43-6. PubMed ID: 21171441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The studies on protective effects of SM against myocardial hypoxia/reoxygenation injury].
    Lin LZ; Wu CL; Lu Z; Huang YR; Zhuang JG; Zhou ZN
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2000 Nov; 16(4):324-6. PubMed ID: 11236689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can ischemic preconditioning protect against hypoxia-induced damage? Studies of contractile function in isolated perfused rat hearts.
    Cave AC; Horowitz GL; Apstein CS
    J Mol Cell Cardiol; 1994 Nov; 26(11):1471-86. PubMed ID: 7897671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia.
    Takeo S; Sakanashi M
    J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial energy metabolism in ischemic preconditioning and cardioplegia: a metabolic control analysis.
    Vogt AM; Elsässer A; Pott-Beckert A; Ackermann C; Vetter SY; Yildiz M; Schoels W; Fell DA; Katus HA; Kübler W
    Mol Cell Biochem; 2005 Oct; 278(1-2):223-32. PubMed ID: 16180108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine.
    Headrick JP
    J Mol Cell Cardiol; 1996 Jun; 28(6):1227-40. PubMed ID: 8782064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging impairs functional, metabolic and ionic recovery from ischemia-reperfusion and hypoxia-reoxygenation.
    Headrick JP
    J Mol Cell Cardiol; 1998 Jul; 30(7):1415-30. PubMed ID: 9710809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effects of befunolol on post-hypoxic recovery of cardiac contractility and myocardial metabolism.
    Maruyama Y; Tanonaka K; Niwa T; Takeo S
    Arzneimittelforschung; 1992 Dec; 42(12):1423-9. PubMed ID: 1363193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of nitrendipine on hypoxic myocardial energy preservation].
    Zheng J; Lan T
    Hua Xi Yi Ke Da Xue Xue Bao; 1994 Mar; 25(1):59-61. PubMed ID: 8070775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Etomidate has no effect on hypoxia reoxygenation and hypoxic preconditioning in isolated human right atrial myocardium.
    Hanouz JL; Lemoine S; Zhu L; Lepage O; Babatasi G; Massetti M; Khayat A; Plaud B; Gérard JL
    Anesth Analg; 2008 Oct; 107(4):1139-44. PubMed ID: 18806015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of yohimbine on posthypoxic recovery of cardiac function and myocardial metabolism in isolated perfused rabbit hearts.
    Takeo S; Hayashi M; Tanonaka K; Yamamoto K
    J Pharmacol Exp Ther; 1991 Jul; 258(1):94-102. PubMed ID: 1677045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization.
    Prabhakar G; Vona-Davis L; Murray D; Lakhani P; Murray G
    J Am Coll Surg; 2003 Nov; 197(5):786-91. PubMed ID: 14585415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro.
    Kauppinen RA; Williams SR
    J Neurosci Res; 1990 Jul; 26(3):356-69. PubMed ID: 2398514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H
    Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion.
    Griese M; Perlitz V; Jüngling E; Kammermeier H
    J Mol Cell Cardiol; 1988 Dec; 20(12):1189-201. PubMed ID: 3249307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardioprotective efficiency of dihydrolipoic acid in working rat hearts during hypoxia and reoxygenation. 31P nuclear magnetic resonance investigations.
    Assadnazari H; Zimmer G; Freisleben HJ; Werk W; Leibfritz D
    Arzneimittelforschung; 1993 Apr; 43(4):425-32. PubMed ID: 8494572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.