BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 21171596)

  • 1. Quantification of the cellular dose and characterization of nanoparticle transport during in vitro testing.
    Rischitor G; Parracino M; La Spina R; Urbán P; Ojea-Jiménez I; Bellido E; Valsesia A; Gioria S; Capomaccio R; Kinsner-Ovaskainen A; Gilliland D; Rossi F; Colpo P
    Part Fibre Toxicol; 2016 Aug; 13(1):47. PubMed ID: 27557953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review on the Hazard Assessment of Amorphous Silica Based on the Literature From 2013 to 2018.
    Krug HF
    Front Public Health; 2022; 10():902893. PubMed ID: 35784253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collection of Controlled Nanosafety Data-The CoCoN-Database, a Tool to Assess Nanomaterial Hazard.
    Krug HF
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is aggregated synthetic amorphous silica toxicologically relevant?
    Murugadoss S; van den Brule S; Brassinne F; Sebaihi N; Mejia J; Lucas S; Petry J; Godderis L; Mast J; Lison D; Hoet PH
    Part Fibre Toxicol; 2020 Jan; 17(1):1. PubMed ID: 31900181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicology of silica nanoparticles: an update.
    Murugadoss S; Lison D; Godderis L; Van Den Brule S; Mast J; Brassinne F; Sebaihi N; Hoet PH
    Arch Toxicol; 2017 Sep; 91(9):2967-3010. PubMed ID: 28573455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials.
    DeLoid GM; Cohen JM; Pyrgiotakis G; Demokritou P
    Nat Protoc; 2017 Feb; 12(2):355-371. PubMed ID: 28102836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media.
    Kaiser JP; Roesslein M; Diener L; Wichser A; Nowack B; Wick P
    J Nanobiotechnology; 2017 Jan; 15(1):5. PubMed ID: 28061858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells.
    Strobel C; Förster M; Hilger I
    Beilstein J Nanotechnol; 2014; 5():1795-807. PubMed ID: 25383291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach for the in vitro dosimetry of engineered nanomaterials.
    Cohen JM; Teeguarden JG; Demokritou P
    Part Fibre Toxicol; 2014 May; 11():20. PubMed ID: 24885440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the effective density of engineered nanomaterials for in vitro dosimetry.
    DeLoid G; Cohen JM; Darrah T; Derk R; Rojanasakul L; Pyrgiotakis G; Wohlleben W; Demokritou P
    Nat Commun; 2014 Mar; 5():3514. PubMed ID: 24675174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the nanoparticle-allostatic cross-adaptation-sensitization model for homeopathic remedy effects.
    Bell IR; Koithan M; Brooks AJ
    Homeopathy; 2013 Jan; 102(1):66-81. PubMed ID: 23290882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of cellular uptake of genotoxic silica nanoparticles.
    Mu Q; Hondow NS; Krzemiński L; Brown AP; Jeuken LJ; Routledge MN
    Part Fibre Toxicol; 2012 Jul; 9():29. PubMed ID: 22823932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel dose metric for apparent cytotoxicity effects generated by in vitro cell exposure to silica nanoparticles.
    Wittmaack K
    Chem Res Toxicol; 2011 Feb; 24(2):150-8. PubMed ID: 21171596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles.
    Stępnik M; Arkusz J; Smok-Pieniążek A; Bratek-Skicki A; Salvati A; Lynch I; Dawson KA; Gromadzińska J; De Jong WH; Rydzyński K
    Toxicol Appl Pharmacol; 2012 Aug; 263(1):89-101. PubMed ID: 22705593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.
    Foldbjerg R; Wang J; Beer C; Thorsen K; Sutherland DS; Autrup H
    Chem Biol Interact; 2013 Jun; 204(1):28-38. PubMed ID: 23623845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays.
    Lison D; Thomassen LC; Rabolli V; Gonzalez L; Napierska D; Seo JW; Kirsch-Volders M; Hoet P; Kirschhock CE; Martens JA
    Toxicol Sci; 2008 Jul; 104(1):155-62. PubMed ID: 18400775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.