These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 21171604)
21. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Jang YH; Xin X; Byun M; Jang YJ; Lin Z; Kim DH Nano Lett; 2012 Jan; 12(1):479-85. PubMed ID: 22148913 [TBL] [Abstract][Full Text] [Related]
22. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Battaglia C; Escarré J; Söderström K; Erni L; Ding L; Bugnon G; Billet A; Boccard M; Barraud L; De Wolf S; Haug FJ; Despeisse M; Ballif C Nano Lett; 2011 Feb; 11(2):661-5. PubMed ID: 21302973 [TBL] [Abstract][Full Text] [Related]
23. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266 [TBL] [Abstract][Full Text] [Related]
25. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. Han J; Kim H; Kim DY; Jo SM; Jang SY ACS Nano; 2010 Jun; 4(6):3503-9. PubMed ID: 20509667 [TBL] [Abstract][Full Text] [Related]
26. Design of nanostructured solar cells using coupled optical and electrical modeling. Deceglie MG; Ferry VE; Alivisatos AP; Atwater HA Nano Lett; 2012 Jun; 12(6):2894-900. PubMed ID: 22574816 [TBL] [Abstract][Full Text] [Related]
27. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Ko SH; Lee D; Kang HW; Nam KH; Yeo JY; Hong SJ; Grigoropoulos CP; Sung HJ Nano Lett; 2011 Feb; 11(2):666-71. PubMed ID: 21207931 [TBL] [Abstract][Full Text] [Related]
28. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Mor GK; Kim S; Paulose M; Varghese OK; Shankar K; Basham J; Grimes CA Nano Lett; 2009 Dec; 9(12):4250-7. PubMed ID: 19775127 [TBL] [Abstract][Full Text] [Related]
29. Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control. Hwang JY; Lee SA; Lee YH; Seok SI ACS Appl Mater Interfaces; 2010 May; 2(5):1343-8. PubMed ID: 20420438 [TBL] [Abstract][Full Text] [Related]
30. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
31. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol. Yang Y; Zhou CH; Xu S; Zhang J; Wu SJ; Hu H; Chen BL; Tai QD; Sun ZH; Liu W; Zhao XZ Nanotechnology; 2009 Mar; 20(10):105204. PubMed ID: 19417514 [TBL] [Abstract][Full Text] [Related]
33. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. Guerin VM; Magne C; Pauporté T; Le Bahers T; Rathousky J ACS Appl Mater Interfaces; 2010 Dec; 2(12):3677-85. PubMed ID: 21082820 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2. Pavasupree S; Ngamsinlapasathian S; Suzuki Y; Yoshikawa S J Nanosci Nanotechnol; 2006 Dec; 6(12):3685-92. PubMed ID: 17256316 [TBL] [Abstract][Full Text] [Related]
35. Light trapping in silicon nanowire solar cells. Garnett E; Yang P Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969 [TBL] [Abstract][Full Text] [Related]
36. Performance enhancement of hybrid solar cells through chemical vapor annealing. Wu Y; Zhang G Nano Lett; 2010 May; 10(5):1628-31. PubMed ID: 20377200 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348 [TBL] [Abstract][Full Text] [Related]
38. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related]
39. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells. Park JH; Noh JH; Han BS; Shin SS; Park IJ; Kim DH; Hong KS J Nanosci Nanotechnol; 2012 Jun; 12(6):5091-5. PubMed ID: 22905583 [TBL] [Abstract][Full Text] [Related]
40. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Boccard M; Battaglia C; Hänni S; Söderström K; Escarré J; Nicolay S; Meillaud F; Despeisse M; Ballif C Nano Lett; 2012 Mar; 12(3):1344-8. PubMed ID: 22332666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]