These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 21171630)
1. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Liu Z; Bol AA; Haensch W Nano Lett; 2011 Feb; 11(2):523-8. PubMed ID: 21171630 [TBL] [Abstract][Full Text] [Related]
6. High electron mobility InAs nanowire field-effect transistors. Dayeh SA; Aplin DP; Zhou X; Yu PK; Yu ET; Wang D Small; 2007 Feb; 3(2):326-32. PubMed ID: 17199246 [TBL] [Abstract][Full Text] [Related]
7. Water-mediated Al metal transfer printing with contact inking for fabrication of thin-film transistors. Oh K; Lee BH; Hwang JK; Lee H; Im S; Sung MM Small; 2009 Mar; 5(5):558-61. PubMed ID: 19199334 [No Abstract] [Full Text] [Related]
8. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s. Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434 [TBL] [Abstract][Full Text] [Related]
9. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Liao L; Bai J; Cheng R; Lin YC; Jiang S; Huang Y; Duan X Nano Lett; 2010 May; 10(5):1917-21. PubMed ID: 20380441 [TBL] [Abstract][Full Text] [Related]
10. Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide. Rinkiö M; Johansson A; Kotimäki V; Törmä P ACS Nano; 2010 Jun; 4(6):3356-62. PubMed ID: 20524681 [TBL] [Abstract][Full Text] [Related]
11. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Kobayashi S; Nishikawa T; Takenobu T; Mori S; Shimoda T; Mitani T; Shimotani H; Yoshimoto N; Ogawa S; Iwasa Y Nat Mater; 2004 May; 3(5):317-22. PubMed ID: 15064756 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Liang X; Chang AS; Zhang Y; Harteneck BD; Choo H; Olynick DL; Cabrini S Nano Lett; 2009 Jan; 9(1):467-72. PubMed ID: 19072062 [TBL] [Abstract][Full Text] [Related]
13. Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Zhang Y; Zhang L; Kim P; Ge M; Li Z; Zhou C Nano Lett; 2012 Jun; 12(6):2810-6. PubMed ID: 22536825 [TBL] [Abstract][Full Text] [Related]
14. Hybrid permeable-base transistors based on an indenofluorene derivative. Serbena JP; Hümmelgen IA; Hadizad T; Wang ZY Small; 2006 Mar; 2(3):372-4. PubMed ID: 17193053 [No Abstract] [Full Text] [Related]
15. InAs nanowire transistors as gas sensor and the response mechanism. Du J; Liang D; Tang H; Gao XP Nano Lett; 2009 Dec; 9(12):4348-51. PubMed ID: 19739664 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Yan Q; Huang B; Yu J; Zheng F; Zang J; Wu J; Gu BL; Liu F; Duan W Nano Lett; 2007 Jun; 7(6):1469-73. PubMed ID: 17461605 [TBL] [Abstract][Full Text] [Related]
17. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Cai W; Moore AL; Zhu Y; Li X; Chen S; Shi L; Ruoff RS Nano Lett; 2010 May; 10(5):1645-51. PubMed ID: 20405895 [TBL] [Abstract][Full Text] [Related]
18. Heat conduction across monolayer and few-layer graphenes. Koh YK; Bae MH; Cahill DG; Pop E Nano Lett; 2010 Nov; 10(11):4363-8. PubMed ID: 20923234 [TBL] [Abstract][Full Text] [Related]
19. A novel method for fabricating sub-16 nm footprint T-gate nanoimprint molds. Peng C; Liang X; Chou SY Nanotechnology; 2009 May; 20(18):185302. PubMed ID: 19420609 [TBL] [Abstract][Full Text] [Related]