These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
5. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent. Rodriguez A; Mokoema P; Corcho F; Bisetty K; Perez JJ J Phys Chem B; 2011 Feb; 115(6):1440-9. PubMed ID: 21254763 [TBL] [Abstract][Full Text] [Related]
6. Free energy landscape of protein folding in water: explicit vs. implicit solvent. Zhou R Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967 [TBL] [Abstract][Full Text] [Related]
7. Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential. Kannan S; Zacharias M Proteins; 2007 Feb; 66(3):697-706. PubMed ID: 17120231 [TBL] [Abstract][Full Text] [Related]
8. Hamiltonian replica-exchange simulations with adaptive biasing of peptide backbone and side chain dihedral angles. Ostermeir K; Zacharias M J Comput Chem; 2014 Jan; 35(2):150-8. PubMed ID: 24318649 [TBL] [Abstract][Full Text] [Related]
9. Exploring the protein folding free energy landscape: coupling replica exchange method with P3ME/RESPA algorithm. Zhou R J Mol Graph Model; 2004 May; 22(5):451-63. PubMed ID: 15099840 [TBL] [Abstract][Full Text] [Related]
11. Recovering Protein Thermal Stability Using All-Atom Hamiltonian Replica-Exchange Simulations in Explicit Solvent. Stirnemann G; Sterpone F J Chem Theory Comput; 2015 Dec; 11(12):5573-7. PubMed ID: 26642979 [TBL] [Abstract][Full Text] [Related]
12. Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Kannan S; Zacharias M Proteins; 2010 Oct; 78(13):2809-19. PubMed ID: 20635348 [TBL] [Abstract][Full Text] [Related]
13. Transform and relax sampling for highly anisotropic systems: application to protein domain motion and folding. Kitao A J Chem Phys; 2011 Jul; 135(4):045101. PubMed ID: 21806159 [TBL] [Abstract][Full Text] [Related]
14. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. Levy RM; Zhang LY; Gallicchio E; Felts AK J Am Chem Soc; 2003 Aug; 125(31):9523-30. PubMed ID: 12889983 [TBL] [Abstract][Full Text] [Related]
15. Ab initio folding simulation of Trpcage by replica exchange with hybrid Hamiltonian. Xu W; Mu Y Biophys Chem; 2008 Oct; 137(2-3):116-25. PubMed ID: 18775599 [TBL] [Abstract][Full Text] [Related]
16. Mimicking coarse-grained simulations without coarse-graining: enhanced sampling by damping short-range interactions. Wei D; Wang F J Chem Phys; 2010 Aug; 133(8):084101. PubMed ID: 20815554 [TBL] [Abstract][Full Text] [Related]
17. Reversible folding simulation by hybrid Hamiltonian replica exchange. Xu W; Lai T; Yang Y; Mu Y J Chem Phys; 2008 May; 128(17):175105. PubMed ID: 18465944 [TBL] [Abstract][Full Text] [Related]
18. Folding free-energy landscape of a 10-residue mini-protein, chignolin. Satoh D; Shimizu K; Nakamura S; Terada T FEBS Lett; 2006 Jun; 580(14):3422-6. PubMed ID: 16709409 [TBL] [Abstract][Full Text] [Related]
19. Multiscale investigation of chemical interference in proteins. Samiotakis A; Homouz D; Cheung MS J Chem Phys; 2010 May; 132(17):175101. PubMed ID: 20459186 [TBL] [Abstract][Full Text] [Related]
20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]