These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21171694)

  • 21. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces.
    Houssa M; van den Broek B; Scalise E; Pourtois G; Afanas'ev VV; Stesmans A
    Phys Chem Chem Phys; 2013 Mar; 15(11):3702-5. PubMed ID: 23403806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observation of plasmarons in quasi-freestanding doped graphene.
    Bostwick A; Speck F; Seyller T; Horn K; Polini M; Asgari R; MacDonald AH; Rotenberg E
    Science; 2010 May; 328(5981):999-1002. PubMed ID: 20489018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Band structures of bilayer graphene superlattices.
    Killi M; Wu S; Paramekanti A
    Phys Rev Lett; 2011 Aug; 107(8):086801. PubMed ID: 21929188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effective fine-structure constant of freestanding graphene measured in graphite.
    Reed JP; Uchoa B; Joe YI; Gan Y; Casa D; Fradkin E; Abbamonte P
    Science; 2010 Nov; 330(6005):805-8. PubMed ID: 21051634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peierls-type instability and tunable band gap in functionalized graphene.
    Abanin DA; Shytov AV; Levitov LS
    Phys Rev Lett; 2010 Aug; 105(8):086802. PubMed ID: 20868123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: success and failure.
    Mori-Sánchez P; Wu Q; Yang W
    J Chem Phys; 2005 Aug; 123(6):62204. PubMed ID: 16122290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized magnetic states in biased bilayer and trilayer graphene.
    Ding KH; Zhu ZG; Berakdar J
    J Phys Condens Matter; 2009 May; 21(18):182002. PubMed ID: 21825443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen vibrational modes on graphene and relaxation of the C-H stretch excitation from first-principles calculations.
    Sakong S; Kratzer P
    J Chem Phys; 2010 Aug; 133(5):054505. PubMed ID: 20707540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coexistence of metallic and insulating-like states in graphene.
    Wu F; Huang J; Li Q; Deng K; Kan E
    Sci Rep; 2015 Mar; 5():8974. PubMed ID: 25754862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures.
    Villegas CE; Tavares MR; Marques GE
    Nanotechnology; 2010 Sep; 21(36):365401. PubMed ID: 20705968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four-component relativistic Kohn-Sham theory.
    Saue T; Helgaker T
    J Comput Chem; 2002 Jun; 23(8):814-23. PubMed ID: 12012358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems.
    Watson MA; Sałek P; Macak P; Helgaker T
    J Chem Phys; 2004 Aug; 121(7):2915-31. PubMed ID: 15291602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chaotic Dirac billiard in graphene quantum dots.
    Ponomarenko LA; Schedin F; Katsnelson MI; Yang R; Hill EW; Novoselov KS; Geim AK
    Science; 2008 Apr; 320(5874):356-8. PubMed ID: 18420930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields.
    Springborg M; Kirtman B
    J Chem Phys; 2007 Mar; 126(10):104107. PubMed ID: 17362061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Band gap engineering for single-layer graphene by using slow Li(+) ions.
    Ryu M; Lee P; Kim J; Park H; Chung J
    Nanotechnology; 2016 Aug; 27(31):31LT03. PubMed ID: 27345294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bandgap opening in graphene induced by patterned hydrogen adsorption.
    Balog R; Jørgensen B; Nilsson L; Andersen M; Rienks E; Bianchi M; Fanetti M; Laegsgaard E; Baraldi A; Lizzit S; Sljivancanin Z; Besenbacher F; Hammer B; Pedersen TG; Hofmann P; Hornekaer L
    Nat Mater; 2010 Apr; 9(4):315-9. PubMed ID: 20228819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.