BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21171963)

  • 1. Functional analysis of RhoGDI inhibitory activity on vacuole membrane fusion.
    Logan MR; Jones L; Forsberg D; Bodman A; Baier A; Eitzen G
    Biochem J; 2011 Mar; 434(3):445-57. PubMed ID: 21171963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion.
    Logan MR; Jones L; Eitzen G
    Biochem Biophys Res Commun; 2010 Mar; 394(1):64-9. PubMed ID: 20171953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking.
    Eitzen G; Thorngren N; Wickner W
    EMBO J; 2001 Oct; 20(20):5650-6. PubMed ID: 11598008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cell-cycle specific localization of the Rdi1p RhoGDI and the structural determinants required for Cdc42p membrane localization and clustering at sites of polarized growth.
    Richman TJ; Toenjes KA; Morales SE; Cole KC; Wasserman BT; Taylor CM; Koster JA; Whelihan MF; Johnson DI
    Curr Genet; 2004 Jun; 45(6):339-49. PubMed ID: 15108020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae.
    Cole KC; McLaughlin HW; Johnson DI
    Eukaryot Cell; 2007 Mar; 6(3):378-87. PubMed ID: 17220465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhoGDI-3, a promising system to investigate the regulatory function of rhoGDIs: uncoupling of inhibitory and shuttling functions of rhoGDIs.
    Dransart E; Morin A; Cherfils J; Olofsson B
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):623-6. PubMed ID: 16042558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of the Rho family small GTP-binding proteins with Rho GDP dissociation inhibitor (Rho GDI) in Saccharomyces cerevisiae.
    Koch G; Tanaka K; Masuda T; Yamochi W; Nonaka H; Takai Y
    Oncogene; 1997 Jul; 15(4):417-22. PubMed ID: 9242378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An activating mutant of Cdc42 that fails to interact with Rho GDP-dissociation inhibitor localizes to the plasma membrane and mediates actin reorganization.
    Gibson RM; Gandhi PN; Tong X; Miyoshi J; Takai Y; Konieczkowski M; Sedor JR; Wilson-Delfosse AL
    Exp Cell Res; 2004 Dec; 301(2):211-22. PubMed ID: 15530857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases.
    Gosser YQ; Nomanbhoy TK; Aghazadeh B; Manor D; Combs C; Cerione RA; Rosen MK
    Nature; 1997 Jun; 387(6635):814-9. PubMed ID: 9194563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling mediated by the closely related mammalian Rho family GTPases TC10 and Cdc42 suggests distinct functional pathways.
    Murphy GA; Jillian SA; Michaelson D; Philips MR; D'Eustachio P; Rush MG
    Cell Growth Differ; 2001 Mar; 12(3):157-67. PubMed ID: 11306516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Rho protein binding to membranes by rhoGDI: inhibition of releasing activity by physiological ionic conditions.
    Bilodeau D; Lamy S; Desrosiers RR; Gingras D; Béliveau R
    Biochem Cell Biol; 1999; 77(1):59-69. PubMed ID: 10426287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhoGDIs revisited: novel roles in Rho regulation.
    Dransart E; Olofsson B; Cherfils J
    Traffic; 2005 Nov; 6(11):957-66. PubMed ID: 16190977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling.
    Bodman JAR; Yang Y; Logan MR; Eitzen G
    J Biol Chem; 2015 Feb; 290(8):4705-4716. PubMed ID: 25561732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling of inhibitory and shuttling functions of rho GDP dissociation inhibitors.
    Dransart E; Morin A; Cherfils J; Olofsson B
    J Biol Chem; 2005 Feb; 280(6):4674-83. PubMed ID: 15513926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdc42p functions at the docking stage of yeast vacuole membrane fusion.
    Müller O; Johnson DI; Mayer A
    EMBO J; 2001 Oct; 20(20):5657-65. PubMed ID: 11598009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of activation of Pak1 kinase by membrane localization.
    Lu W; Mayer BJ
    Oncogene; 1999 Jan; 18(3):797-806. PubMed ID: 9989831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming.
    Jones L; Tedrick K; Baier A; Logan MR; Eitzen G
    J Biol Chem; 2010 Feb; 285(7):4298-306. PubMed ID: 20007700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural coupling between the Rho-insert domain of Cdc42 and the geranylgeranyl binding site of RhoGDI.
    Abramovitz A; Gutman M; Nachliel E
    Biochemistry; 2012 Jan; 51(2):715-23. PubMed ID: 22206343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI.
    Scheffzek K; Stephan I; Jensen ON; Illenberger D; Gierschik P
    Nat Struct Biol; 2000 Feb; 7(2):122-6. PubMed ID: 10655614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.