These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21172057)

  • 41. SIDDBASE: a database containing the stress-induced DNA duplex destabilization (SIDD) profiles of complete microbial genomes.
    Wang H; Kaloper M; Benham CJ
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D373-8. PubMed ID: 16381890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of the codon first letter in the relationship between genomic GC content and protein amino acid composition.
    Wilquet V; Van de Casteele M
    Res Microbiol; 1999; 150(1):21-32. PubMed ID: 10096131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium.
    Kawashima T; Amano N; Koike H; Makino S; Higuchi S; Kawashima-Ohya Y; Watanabe K; Yamazaki M; Kanehori K; Kawamoto T; Nunoshiba T; Yamamoto Y; Aramaki H; Makino K; Suzuki M
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14257-62. PubMed ID: 11121031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative analysis of aerobic and anaerobic prokaryotes to identify correlation between oxygen requirement and gene-gene functional association patterns.
    Lin Y; Wu H
    Genome Inform; 2009 Oct; 23(1):72-84. PubMed ID: 20180263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomic GC content drifts downward in most bacterial genomes.
    Ely B
    PLoS One; 2021; 16(5):e0244163. PubMed ID: 34038432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors.
    Wang HC; Susko E; Roger AJ
    Biochem Biophys Res Commun; 2006 Apr; 342(3):681-4. PubMed ID: 16499870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of two large functionally uncharacterized regions in the Methanopyrus kandleri AV19 genome.
    Jensen LJ; Skovgaard M; Sicheritz-Pontén T; Jørgensen MK; Lundegaard C; Pedersen CC; Petersen N; Ussery D
    BMC Genomics; 2003 Apr; 4(1):12. PubMed ID: 12697059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes.
    Bocs S; Danchin A; Médigue C
    BMC Bioinformatics; 2002; 3():5. PubMed ID: 11879526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal adaptation of the small subunit ribosomal RNA gene: a comparative study.
    Wang HC; Xia X; Hickey D
    J Mol Evol; 2006 Jul; 63(1):120-6. PubMed ID: 16786438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes.
    McLean MJ; Wolfe KH; Devine KM
    J Mol Evol; 1998 Dec; 47(6):691-6. PubMed ID: 9847411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A complete sequence of the T. tengcongensis genome.
    Bao Q; Tian Y; Li W; Xu Z; Xuan Z; Hu S; Dong W; Yang J; Chen Y; Xue Y; Xu Y; Lai X; Huang L; Dong X; Ma Y; Ling L; Tan H; Chen R; Wang J; Yu J; Yang H
    Genome Res; 2002 May; 12(5):689-700. PubMed ID: 11997336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The consequences of base pair composition biases for regulatory network organization in prokaryotes.
    Cordero OX; Hogeweg P
    Mol Biol Evol; 2009 Oct; 26(10):2171-3. PubMed ID: 19567917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA Repair Is Associated with Information Content in Bacteria, Archaea, and DNA Viruses.
    Acosta S; Carela M; Garcia-Gonzalez A; Gines M; Vicens L; Cruet R; Massey SE
    J Hered; 2015; 106(5):644-59. PubMed ID: 26320243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An in vitro strategy for the selective isolation of anomalous DNA from prokaryotic genomes.
    van Passel MW; Bart A; Waaijer RJ; Luyf AC; van Kampen AH; van der Ende A
    Nucleic Acids Res; 2004 Aug; 32(14):e114. PubMed ID: 15304543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into bacterial genome composition through variable target GC content profiling.
    Mann S; Li J; Chen YP
    J Comput Biol; 2010 Jan; 17(1):79-96. PubMed ID: 20078399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences.
    Noguchi H; Park J; Takagi T
    Nucleic Acids Res; 2006; 34(19):5623-30. PubMed ID: 17028096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Significant differences between the G+C content of synonymous codons in orthologous genes and the genomic G+C content.
    Bellgard MI; Gojobori T
    Gene; 1999 Sep; 238(1):33-7. PubMed ID: 10570981
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world.
    Koonin EV; Wolf YI
    Nucleic Acids Res; 2008 Dec; 36(21):6688-719. PubMed ID: 18948295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Homologous Recombination on the Evolution of Prokaryotic Core Genomes.
    González-Torres P; Rodríguez-Mateos F; Antón J; Gabaldón T
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis.
    Tekaia F; Yeramian E; Dujon B
    Gene; 2002 Sep; 297(1-2):51-60. PubMed ID: 12384285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.