These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21172303)

  • 1. Sodium influence on energy transduction by complexes I from Escherichia coli and Paracoccus denitrificans.
    Batista AP; Pereira MM
    Biochim Biophys Acta; 2011 Mar; 1807(3):286-92. PubMed ID: 21172303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy conservation by Rhodothermus marinus respiratory complex I.
    Batista AP; Fernandes AS; Louro RO; Steuber J; Pereira MM
    Biochim Biophys Acta; 2010 Apr; 1797(4):509-15. PubMed ID: 20100453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupling of the catalytic and transport activities of complex I from Rhodothermus marinus by sodium/proton antiporter inhibitor.
    Batista AP; Marreiros BC; Pereira MM
    ACS Chem Biol; 2011 May; 6(5):477-83. PubMed ID: 21268658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the effects of thiocyanate and venturicidin on respiration-driven proton translocation in Paracoccus denitrificans.
    Hitchens GD; Kell DB
    Biochim Biophys Acta; 1984 Jul; 766(1):222-32. PubMed ID: 6743650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory Complex I in
    Jones AJ; Blaza JN; Varghese F; Hirst J
    J Biol Chem; 2017 Mar; 292(12):4987-4995. PubMed ID: 28174301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton/sodium ion antiport in Escherichia coli.
    West IC; Mitchell P
    Biochem J; 1974 Oct; 144(1):87-90. PubMed ID: 4618479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transduction in the mitochondrionlike bacterium Paracoccus denitrificans during carbon- or sulphate-limited aerobic growth in continuous culture.
    Lawford HG
    Can J Biochem; 1978 Jan; 56(1):13-22. PubMed ID: 36970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of protonatable residues in Rhodothermus marinus caa3 haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa3 haem-copper oxygen reductase.
    Soares CM; Baptista AM; Pereira MM; Teixeira M
    J Biol Inorg Chem; 2004 Mar; 9(2):124-34. PubMed ID: 14691678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bioenergetics of Paracoccus denitrificans.
    John P; Whatley FR
    Biochim Biophys Acta; 1977 Oct; 463(2):129-53. PubMed ID: 20140
    [No Abstract]   [Full Text] [Related]  

  • 10. Electrochemically driven respiration in mitochondria and Paracoccus denitrificans. The coupling of the electrochemistry of horse heart cytochrome c with respiration in mitochondria and a model thereof, Paracoccus denitrificans.
    Coleman JO; Hill HA; Walton NJ; Whatley FR
    FEBS Lett; 1983 Apr; 154(2):319-22. PubMed ID: 6299804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I).
    Friedrich T; Stolpe S; Schneider D; Barquera B; Hellwig P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):836-9. PubMed ID: 16042610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria.
    Kristjansson JK; Walter B; Hollocher TC
    Biochemistry; 1978 Nov; 17(23):5014-9. PubMed ID: 31172
    [No Abstract]   [Full Text] [Related]  

  • 13. Proton translocation coupled to ubiquinol oxidation in Paracoccus denitrificans.
    Lawford HG
    Can J Biochem; 1979 Feb; 57(2):172-7. PubMed ID: 36972
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy coupling to K+ transport in Paracoccus denitrificans.
    EreciƄska M; Deutsch CJ; Davis JS
    J Biol Chem; 1981 Jan; 256(1):278-84. PubMed ID: 7451438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the current-voltage relationships of energy-transducing membranes: phosphorylating membrane vesicles from Paracoccus denitrificans [proceedings].
    Kell DB; John P; Ferguson SJ
    Biochem Soc Trans; 1978; 6(6):1292-5. PubMed ID: 217778
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans plasma membranes catalyzes FMN-independent reverse electron transfer to hexaammineruthenium (III).
    Gladyshev GV; Zharova TV; Kareyeva AV; Grivennikova VG
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148963. PubMed ID: 36842539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects induced by rotenone during aerobic growth of Paracoccus denitrificans in continuous culture. Changes in energy conservation and electron transport associated with NADH dehydrogenase.
    Meijer EM; Schuitenmaker MG; Boogerd FC; Wever R; Stouthamer AH
    Arch Microbiol; 1978 Nov; 119(2):119-27. PubMed ID: 727852
    [No Abstract]   [Full Text] [Related]  

  • 18. The proton pumping bo oxidase from Vitreoscilla.
    Graf S; Brzezinski P; von Ballmoos C
    Sci Rep; 2019 Mar; 9(1):4766. PubMed ID: 30886219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I.
    Jarman OD; Biner O; Wright JJ; Hirst J
    Sci Rep; 2021 May; 11(1):10143. PubMed ID: 33980947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans.
    Burnell JN; John P; Whatley FR
    Biochem J; 1975 Sep; 150(3):527-36. PubMed ID: 1212205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.