These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21172303)
41. The Na+/H+ antiporter of the thermohalophilic bacterium Rhodothermus marinus. Melo AM; Felix NA; Carita JN; Saraiva LM; Teixeira M Biochem Biophys Res Commun; 2006 Sep; 348(3):1011-7. PubMed ID: 16904646 [TBL] [Abstract][Full Text] [Related]
42. Toxicity of 2-mercaptobenzothiazole towards bacterial growth and respiration. De Wever H; De Moor K; Verachtert H Appl Microbiol Biotechnol; 1994 Dec; 42(4):631-5. PubMed ID: 7765737 [TBL] [Abstract][Full Text] [Related]
43. Relationship between amino acid transport and electron transport by membrane vesicles of Micrococcus denitrificans. White DC; Tucker AN; Kaback HR Arch Biochem Biophys; 1974 Dec; 165(2):672-80. PubMed ID: 4441098 [No Abstract] [Full Text] [Related]
44. Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme. Hendler RW; Pardhasaradhi K; Reynafarje B; Ludwig B Biophys J; 1991 Aug; 60(2):415-23. PubMed ID: 1655083 [TBL] [Abstract][Full Text] [Related]
45. Activation of Proton Translocation by Respiratory Complex I. Belevich N; von Ballmoos C; Verkhovskaya M Biochemistry; 2017 Oct; 56(42):5691-5697. PubMed ID: 28960069 [TBL] [Abstract][Full Text] [Related]
46. Electron-transport chain and coupled oxidative phosphorylation in methanol-grown Paracoccus denitrificans. Van Verseveld HW; Stouthamer AH Arch Microbiol; 1978 Jul; 118(1):13-20. PubMed ID: 29587 [No Abstract] [Full Text] [Related]
47. Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans. Garber EA; Castignetti D; Hollocher TC Biochem Biophys Res Commun; 1982 Aug; 107(4):1504-7. PubMed ID: 7138549 [No Abstract] [Full Text] [Related]
48. Osmotic effects on bacterial transport and energetics. Erecińska M; Deutsch CJ FEBS Lett; 1985 Aug; 188(1):145-9. PubMed ID: 2991018 [TBL] [Abstract][Full Text] [Related]
49. Transport of Na(+) and K (+) by an antiporter-related subunit from the Escherichia coli NADH dehydrogenase I produced in Saccharomyces cerevisiae. Gemperli AC; Schaffitzel C; Jakob C; Steuber J Arch Microbiol; 2007 Nov; 188(5):509-21. PubMed ID: 17583799 [TBL] [Abstract][Full Text] [Related]
50. Cytochrome c oxidase as a calcium binding protein. Studies on the role of a conserved aspartate in helices XI-XII cytoplasmic loop in cation binding. Kirichenko AV; Pfitzner U; Ludwig B; Soares CM; Vygodina TV; Konstantinov AA Biochemistry; 2005 Sep; 44(37):12391-401. PubMed ID: 16156652 [TBL] [Abstract][Full Text] [Related]
52. Control of respiration rate in non-growing cells of Paracoccus denitrificans. Kucera I; Lampardová L; Dadák V Biochem J; 1987 Sep; 246(3):779-82. PubMed ID: 2825653 [TBL] [Abstract][Full Text] [Related]
53. Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenylphosphonium cation during aerobic and anaerobic respiration. McCarthy JE; Ferguson SJ; Kell DB Biochem J; 1981 Apr; 196(1):311-21. PubMed ID: 7306073 [TBL] [Abstract][Full Text] [Related]
54. Inhibition, but not uncoupling, of respiratory energy coupling of three bacterial species by nitrite. Rake JB; Eagon RG J Bacteriol; 1980 Dec; 144(3):975-82. PubMed ID: 6777373 [TBL] [Abstract][Full Text] [Related]
55. Phosphate transport in membrane vesicles of Paracoccus denitrificans. Burnell JN; John P; Whatley FR FEBS Lett; 1975 Oct; 58(1):215-8. PubMed ID: 1225582 [No Abstract] [Full Text] [Related]
56. Respiration-driven accumulation of C4 dicarboxylic acids by isolated membrane vesicles of Paracoccus denitrificans. Pik JR; Lawford HG Can J Biochem; 1979 May; 57(5):436-43. PubMed ID: 455122 [No Abstract] [Full Text] [Related]
57. Branched electron-transport systems in bacteria. White DC; Sinclair PR Adv Microb Physiol; 1971; 5():173-211. PubMed ID: 5005815 [No Abstract] [Full Text] [Related]
58. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ; Reeves JP; Kaback HR J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
59. Steady-state measurements of Escherichia coli sodium and proton potentials at alkaline pH support the hypothesis of electrogenic antiport. Pan JW; Macnab RM J Biol Chem; 1990 Jun; 265(16):9247-50. PubMed ID: 2160968 [TBL] [Abstract][Full Text] [Related]
60. Oxygen increases the steady-state level of nitrate in denitrifying cells of Paracoccus denitrificans. Kucera I; Kaplan P; Zeman A FEMS Microbiol Lett; 1996 Dec; 145(2):163-6. PubMed ID: 8961552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]