These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21172417)

  • 21. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol].
    Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI
    Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress.
    Koziol S; Zagulski M; Bilinski T; Bartosz G
    Free Radic Res; 2005 Apr; 39(4):365-71. PubMed ID: 16028362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium-induced oxidative stress in Saccharomyces cerevisiae.
    Muthukumar K; Nachiappan V
    Indian J Biochem Biophys; 2010 Dec; 47(6):383-7. PubMed ID: 21355423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage.
    Sohn HY; Kwon CS; Kwon GS; Lee JB; Kim E
    Toxicol Lett; 2004 Jul; 151(2):357-65. PubMed ID: 15183460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
    Sugiyama K; Kawamura A; Izawa S; Inoue Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae.
    Fortuniak A; Jakubowski W; Biliński T; Bartosz G
    Biochem Mol Biol Int; 1996 May; 38(6):1271-6. PubMed ID: 8739049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of deleting mitochondrial antioxidant genes on life span.
    Unlu ES; Koc A
    Ann N Y Acad Sci; 2007 Apr; 1100():505-9. PubMed ID: 17460215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of stress on the life span of the yeast Saccharomyces cerevisiae.
    Swieciło A; Krawiec Z; Wawryn J; Bartosz G; Biliński T
    Acta Biochim Pol; 2000; 47(2):355-64. PubMed ID: 11051200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalase T and Cu,Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
    Guaragnella N; Antonacci L; Giannattasio S; Marra E; Passarella S
    FEBS Lett; 2008 Jan; 582(2):210-4. PubMed ID: 18082141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system.
    Rodriguez CE; Shinyashiki M; Froines J; Yu RC; Fukuto JM; Cho AK
    Toxicology; 2004 Sep; 201(1-3):185-96. PubMed ID: 15297032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.
    Tan SX; Teo M; Lam YT; Dawes IW; Perrone GG
    Mol Biol Cell; 2009 Mar; 20(5):1493-508. PubMed ID: 19129474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.
    Kwolek-Mirek M; Zadrąg-Tęcza R; Bednarska S; Bartosz G
    Cell Biochem Biophys; 2015 Apr; 71(3):1525-36. PubMed ID: 25395196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant.
    Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV
    Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds.
    Wallace MA; Bailey S; Fukuto JM; Valentine JS; Gralla EB
    Chem Res Toxicol; 2005 Aug; 18(8):1279-86. PubMed ID: 16097801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase.
    Lee SM; Park JW
    Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a
    Lin Z; Zhang Y; Li F; Tan X; Luo P; Liu H
    Mar Drugs; 2020 Jul; 18(8):. PubMed ID: 32731522
    [No Abstract]   [Full Text] [Related]  

  • 40. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae.
    Ferreira TC; de Moraes LM; Campos EG
    FEMS Yeast Res; 2011 Aug; 11(5):408-17. PubMed ID: 21457450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.