These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21173024)

  • 1. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus.
    Chen X; Truksa M; Snyder CL; El-Mezawy A; Shah S; Weselake RJ
    Plant Physiol; 2011 Feb; 155(2):851-65. PubMed ID: 21173024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus.
    Wang J; Singh SK; Geng S; Zhang S; Yuan L
    Planta; 2020 Apr; 251(4):93. PubMed ID: 32246349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.
    Chen X; Chen G; Truksa M; Snyder CL; Shah S; Weselake RJ
    J Exp Bot; 2014 Aug; 65(15):4201-15. PubMed ID: 24821955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.
    Yang M; Yang Q; Fu T; Zhou Y
    Plant Cell Rep; 2011 Mar; 30(3):373-88. PubMed ID: 20976458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages.
    Dun X; Shen W; Hu K; Zhou Z; Xia S; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T; Lagercrantz U
    Plant Physiol; 2014 Nov; 166(3):1403-19. PubMed ID: 25185122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae.
    Cárdenas PD; Gajardo HA; Huebert T; Parkin IA; Iniguez-Luy FL; Federico ML
    Theor Appl Genet; 2012 May; 124(7):1215-28. PubMed ID: 22241480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional divergence of homologous GPAT9 genes contributes to the erucic acid content of Brassica napus seeds.
    Liu H; Zhu J; Zhang B; Li Q; Liu C; Huang Q; Cui P
    BMC Plant Biol; 2024 Jan; 24(1):69. PubMed ID: 38262947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus.
    Li M; Wang R; Wu X; Wang J
    BMC Genomics; 2020 Apr; 21(1):330. PubMed ID: 32349676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait.
    Chai YR; Lei B; Huang HL; Li JN; Yin JM; Tang ZL; Wang R; Chen L
    Mol Genet Genomics; 2009 Jan; 281(1):109-23. PubMed ID: 19018571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.
    Li ZG; Yin WB; Guo H; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM
    Genome; 2010 May; 53(5):360-70. PubMed ID: 20616867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.
    Li ZG; Yin WB; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM
    Genome; 2011 Mar; 54(3):202-11. PubMed ID: 21423283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.
    Lee KR; In Sohn S; Jung JH; Kim SH; Roh KH; Kim JB; Suh MC; Kim HU
    Gene; 2013 Dec; 531(2):253-62. PubMed ID: 24029080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure.
    Yang W; Pollard M; Li-Beisson Y; Ohlrogge J
    Phytochemistry; 2016 Oct; 130():159-69. PubMed ID: 27211345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks.
    Wang J; Long Y; Wu B; Liu J; Jiang C; Shi L; Zhao J; King GJ; Meng J
    BMC Evol Biol; 2009 Nov; 9():271. PubMed ID: 19939256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in
    Gong W; Chen W; Gao Q; Qian L; Yuan X; Tang S; Hong Y
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.
    Hirschmann F; Papenbrock J
    Plant Physiol Biochem; 2015 Jun; 91():10-9. PubMed ID: 25827495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map.
    Cai G; Yang Q; Yi B; Fan C; Edwards D; Batley J; Zhou Y
    PLoS One; 2014; 9(10):e109910. PubMed ID: 25356735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization.
    Li M; Wang R; Liang Z; Wu X; Wang J
    BMC Plant Biol; 2019 Mar; 19(1):110. PubMed ID: 30898097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.
    He Y; Mao S; Gao Y; Zhu L; Wu D; Cui Y; Li J; Qian W
    PLoS One; 2016; 11(6):e0157558. PubMed ID: 27322342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.
    Orsel M; Moison M; Clouet V; Thomas J; Leprince F; Canoy AS; Just J; Chalhoub B; Masclaux-Daubresse C
    J Exp Bot; 2014 Jul; 65(14):3927-47. PubMed ID: 24567494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.