These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21173038)

  • 21. Preventing gaseous microemboli during blood sampling and drug administration: an in vitro investigation.
    Myers GJ
    J Extra Corpor Technol; 2007 Sep; 39(3):192-8. PubMed ID: 17972455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamic bubble trap reduces microbubbles during cardiopulmonary bypass: a case study.
    Schönburg M; Urbanek P; Erhardt G; Taborski U; Plechinger H; Hein S; Roth M; Klövekorn WP
    J Extra Corpor Technol; 2000 Sep; 32(3):165-9. PubMed ID: 11146963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-level alarm and bubble detector system for cardiopulmonary bypass.
    Hertzberg G
    Clin Eng News; 1977; 5(2):8. PubMed ID: 10236174
    [No Abstract]   [Full Text] [Related]  

  • 25. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple system for deairing the heart after cardiopulmonary bypass.
    Salzano RP; Khachane VB
    Ann Thorac Surg; 1996 Nov; 62(5):1537-8. PubMed ID: 8893608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical advantages of using mini-bypass systems in terms of blood product use, postoperative bleeding and air entrainment: an in vivo clinical perspective.
    Perthel M; El-Ayoubi L; Bendisch A; Laas J; Gerigk M
    Eur J Cardiothorac Surg; 2007 Jun; 31(6):1070-5; discussion 1075. PubMed ID: 17337198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of mini-cardiopulmonary bypass system with air-purge device to conventional bypass system.
    Ti LK; Goh BL; Wong PS; Ong P; Goh SG; Lee CN
    Ann Thorac Surg; 2008 Mar; 85(3):994-1000. PubMed ID: 18291186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime?
    Nyman J; Rundby C; Svenarud P; van der Linden J
    Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pediatric cardiopulmonary bypass circuits: a review of studies conducted at the Penn State Pediatric Cardiac Research Laboratories.
    Miller A; Lu CK; Wang S; Umstead TM; Freeman WM; Vrana K; Yang S; Myers JL; Phelps DS; Zahn JD; Undar A
    J Extra Corpor Technol; 2009 Mar; 41(1):P50-8. PubMed ID: 19361042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gaseous microemboli in cardiac surgery with cardiopulmonary bypass: the use of veno-arterial shunt as a preventive method.
    Reis EE; Menezes LD; Justo CC
    Rev Bras Cir Cardiovasc; 2012; 27(3):436-45. PubMed ID: 23288186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new minimized perfusion circuit provides highly effective ultrasound controlled deairing.
    Kutschka I; Schönrock U; El Essawi A; Pahari D; Anssar M; Harringer W
    Artif Organs; 2007 Mar; 31(3):215-20. PubMed ID: 17343697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children.
    Win KN; Wang S; Undar A
    ASAIO J; 2008; 54(5):486-90. PubMed ID: 18812739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The acoustic filter: an ultrasonic blood filter for the heart-lung machine.
    Schwarz KQ; Church CC; Serrino P; Meltzer RS
    J Thorac Cardiovasc Surg; 1992 Dec; 104(6):1647-53. PubMed ID: 1453729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management.
    Mills NL; Ochsner JL
    J Thorac Cardiovasc Surg; 1980 Nov; 80(5):708-17. PubMed ID: 7431967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical comparison of two devices for detection of microemboli during cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1990 Nov; 11(4):327-32. PubMed ID: 2279375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of vacuum assisted drainage on arterial line emboli.
    Willcox TW; Mitchell SJ
    J Extra Corpor Technol; 2002 Sep; 34(3):228-9; author reply 229-30. PubMed ID: 12395969
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.