These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21173392)

  • 1. Perceptual adaptation of voice gender discrimination with spectrally shifted vowels.
    Li T; Fu QJ
    J Speech Lang Hear Res; 2011 Aug; 54(4):1240-5. PubMed ID: 21173392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.
    Fu QJ; Chinchilla S; Galvin JJ
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):253-60. PubMed ID: 15492884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels.
    Li T; Fu QJ
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):32-41. PubMed ID: 17131213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Temporal Envelope Cutoff Frequency, Number of Channels, and Carrier Type on Brainstem Neural Representation of Pitch in Vocoded Speech.
    Ananthakrishnan S; Luo X
    J Speech Lang Hear Res; 2022 Aug; 65(8):3146-3164. PubMed ID: 35944032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation.
    Fu QJ; Nogaki G; Galvin JJ
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice gender identification by cochlear implant users: the role of spectral and temporal resolution.
    Fu QJ; Chinchilla S; Nogaki G; Galvin JJ
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1711-8. PubMed ID: 16240829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.
    Başkent D; Chatterjee M
    Hear Res; 2010 Dec; 270(1-2):127-33. PubMed ID: 20817081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voice gender and the segregation of competing talkers: Perceptual learning in cochlear implant simulations.
    Sullivan JR; Assmann PF; Hossain S; Schafer EC
    J Acoust Soc Am; 2017 Mar; 141(3):1643. PubMed ID: 28372046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual "vowel spaces" of cochlear implant users: implications for the study of auditory adaptation to spectral shift.
    Harnsberger JD; Svirsky MA; Kaiser AR; Pisoni DB; Wright R; Meyer TA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2135-45. PubMed ID: 11386565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contributions of spectral and temporal cues for phoneme recognition.
    Xu L; Thompson CS; Pfingst BE
    J Acoust Soc Am; 2005 May; 117(5):3255-67. PubMed ID: 15957791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of talker variability on vowel recognition in cochlear implants.
    Chang YP; Fu QJ
    J Speech Lang Hear Res; 2006 Dec; 49(6):1331-41. PubMed ID: 17197499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential stream segregation using temporal periodicity cues in cochlear implant recipients.
    Hong RS; Turner CW
    J Acoust Soc Am; 2009 Jul; 126(1):291-9. PubMed ID: 19603885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.
    Cullington HE; Zeng FG
    Ear Hear; 2011 Feb; 32(1):16-30. PubMed ID: 21178567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saliency of Vowel Features in Neural Responses of Cochlear Implant Users.
    Prévost F; Lehmann A
    Clin EEG Neurosci; 2018 Nov; 49(6):388-397. PubMed ID: 29690785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.