These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21173827)

  • 1. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.
    Mahajan VN
    Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Zernike expansion of the optical aberration function from its power series expansion.
    Braat JJ; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefront aberrations of x-ray dynamical diffraction beams.
    Liao K; Hong Y; Sheng W
    Appl Opt; 2014 Oct; 53(28):6362-70. PubMed ID: 25322219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TP
    Appl Opt; 2017 Mar; 56(8):2336-2345. PubMed ID: 28375280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils.
    Lee H
    Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Least-squares fitting of orthogonal polynomials to the wave-aberration function.
    Rayces JL
    Appl Opt; 1992 May; 31(13):2223-8. PubMed ID: 20720881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pupil aberrations in Offner spectrometers.
    González-Núñez H; Prieto-Blanco X; de la Fuente R
    J Opt Soc Am A Opt Image Sci Vis; 2012 Apr; 29(4):442-9. PubMed ID: 22472819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials.
    Sun W; Chen L; Tuya W; He Y; Zhu R
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2539-46. PubMed ID: 24323015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonal polynomials describing polarization aberration for rotationally symmetric optical systems.
    Xu X; Huang W; Xu M
    Opt Express; 2015 Oct; 23(21):27911-9. PubMed ID: 26480449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthonormal polynomials describing polarization aberration for M-fold optical systems.
    Xu X; Huang W; Xu M
    Opt Express; 2016 Mar; 24(5):4906-4912. PubMed ID: 29092318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical performance of monofocal and multifocal intraocular lenses in the human eye.
    Ortiz D; Alió JL; Bernabéu G; Pongo V
    J Cataract Refract Surg; 2008 May; 34(5):755-62. PubMed ID: 18471629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging characteristics of Zernike and annular polynomial aberrations.
    Mahajan VN; Díaz JA
    Appl Opt; 2013 Apr; 52(10):2062-74. PubMed ID: 23545961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.