BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21173829)

  • 1. Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields.
    Hellen A; Matvienko A; Mandelis A; Finer Y; Amaechi BT
    Appl Opt; 2010 Dec; 49(36):6938-51. PubMed ID: 21173829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071406. PubMed ID: 21806252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biophotonics; 2011 Nov; 4(11-12):788-804. PubMed ID: 21761572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry.
    Matvienko A; Mandelis A; Abrams S
    Appl Opt; 2009 Jun; 48(17):3192-203. PubMed ID: 19516364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-CT based quantitative evaluation of caries excavation.
    Neves Ade A; Coutinho E; Vivan Cardoso M; Jaecques SV; Van Meerbeek B
    Dent Mater; 2010 Jun; 26(6):579-88. PubMed ID: 20347481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical scattering power for characterization of mineral loss.
    Ko CC; Tantbirojn D; Wang T; Douglas WH
    J Dent Res; 2000 Aug; 79(8):1584-9. PubMed ID: 11023279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early caries imaging and monitoring with near-infrared light.
    Fried D; Featherstone JD; Darling CL; Jones RS; Ngaotheppitak P; Bühler CM
    Dent Clin North Am; 2005 Oct; 49(4):771-93, vi. PubMed ID: 16150316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth.
    Tabatabaei N; Mandelis A; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071402. PubMed ID: 21806248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of laser fluorescence in the monitoring of the initial stage of the de-/remineralization process: an in vitro and in situ study.
    Spiguel MH; Tovo MF; Kramer PF; Franco KS; Alves KM; Delbem AC
    Caries Res; 2009; 43(4):302-7. PubMed ID: 19439952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.
    Usenik P; Bürmen M; Fidler A; Pernuš F; Likar B
    J Dent; 2014 Oct; 42(10):1242-7. PubMed ID: 25150104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo simulation of the influence of sound enamel scattering coefficient on lesion visibility in light-induced fluorescence.
    van der Veen MH; Ando M; Stookey GK; de Josselin de Jong E
    Caries Res; 2002; 36(1):10-8. PubMed ID: 11961324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved fluorescence spectroscopy of white-spot caries in human enamel.
    Ferretti de Oliveira F; Ito AS; Bachmann L
    Appl Opt; 2010 Apr; 49(12):2244-9. PubMed ID: 20411003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of fibre-optic confocal microscopy for detection and diagnosis of dental caries.
    Rousseau C; Poland S; Girkin JM; Hall AF; Whitters CJ
    Caries Res; 2007; 41(4):245-51. PubMed ID: 17556832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of enamel with variable caries risk.
    Gutierrez P; Piña C; Lara VH; Bosch P
    Arch Oral Biol; 2005 Oct; 50(10):843-8. PubMed ID: 16023071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the caries process. Optical methods for clinical diagnosis and quantification of enamel caries.
    Angmar-Mànsson B; al-Khateeb S; Tranaeus S
    Eur J Oral Sci; 1996 Aug; 104(4 ( Pt 2)):480-5. PubMed ID: 8930601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineral loss in incipient caries lesions quantified with laser fluorescence and longitudinal microradiography. A methodologic study.
    Emami Z; al-Khateeb S; de Josselin de Jong E; Sundström F; Trollsås K; Angmar-Månsson B
    Acta Odontol Scand; 1996 Feb; 54(1):8-13. PubMed ID: 8669246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy.
    Subhash N; Thomas SS; Mallia RJ; Jose M
    Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of EPR signal dose response of tooth enamel to photons: experiment and Monte Carlo simulation.
    Ivannikov AI; Tikunov DD; Borysheva NB; Trompier F; Skvortsov VG; Stepanenko VF; Hoshi M
    Radiat Prot Dosimetry; 2004; 108(4):303-15. PubMed ID: 15103060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.
    Khailov AM; Ivannikov AI; Skvortsov VG; Stepanenko VF; Tsyb AF; Trompier F; Hoshi M
    Health Phys; 2010 Feb; 98(2):369-77. PubMed ID: 20065707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.