BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21173970)

  • 1. Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells.
    Barnes PR; Anderson AY; Juozapavicius M; Liu L; Li X; Palomares E; Forneli A; O'Regan BC
    Phys Chem Chem Phys; 2011 Feb; 13(8):3547-58. PubMed ID: 21173970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.
    Barnes PR; Anderson AY; Durrant JR; O'Regan BC
    Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of iodine addition on solid-state electrolyte LiI/3-hydroxypropionitrile (1:4) for dye-sensitized solar cells.
    Wang H; Liu X; Wang Z; Li H; Li D; Meng Q; Chen L
    J Phys Chem B; 2006 Mar; 110(12):5970-4. PubMed ID: 16553405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps.
    Griffith MJ; Sunahara K; Wagner P; Wagner K; Wallace GG; Officer DL; Furube A; Katoh R; Mori S; Mozer AJ
    Chem Commun (Camb); 2012 May; 48(35):4145-62. PubMed ID: 22441329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions.
    Nissfolk J; Fredin K; Hagfeldt A; Boschloo G
    J Phys Chem B; 2006 Sep; 110(36):17715-8. PubMed ID: 16956254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive.
    Kisserwan H; Ghaddar TH
    Dalton Trans; 2011 Apr; 40(15):3877-84. PubMed ID: 21308133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells.
    Maggio E; Martsinovich N; Troisi A
    J Chem Phys; 2012 Dec; 137(22):22A508. PubMed ID: 23249045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells.
    Clifford JN; Martínez-Ferrero E; Viterisi A; Palomares E
    Chem Soc Rev; 2011 Mar; 40(3):1635-46. PubMed ID: 21076736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells.
    Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ
    J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements.
    O'Regan BC; Scully S; Mayer AC; Palomares E; Durrant J
    J Phys Chem B; 2005 Mar; 109(10):4616-23. PubMed ID: 16851540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial electron distribution and its origin in the nanoporous TiO2 network of a dye solar cell.
    Würfel U; Wagner J; Hinsch A
    J Phys Chem B; 2005 Nov; 109(43):20444-8. PubMed ID: 16853645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of colloidal quantum-dot-sensitized solar cells.
    Giménez S; Mora-Seró I; Macor L; Guijarro N; Lana-Villarreal T; Gómez R; Diguna LJ; Shen Q; Toyoda T; Bisquert J
    Nanotechnology; 2009 Jul; 20(29):295204. PubMed ID: 19567969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.