These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21174160)
1. A mechatronic valve in the management of hydrocephalus: methods and performance. Momani L; Al-Nuaimy W; Al-Jumaily M; Mallucci C Med Biol Eng Comput; 2011 Jan; 49(1):121-32. PubMed ID: 21174160 [TBL] [Abstract][Full Text] [Related]
2. Instantiating a mechatronic valve schedule for a hydrocephalus shunt. Momani L; Alkharabsheh AR; Al-Zuibi N; Al-Nuaimy W Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():749-52. PubMed ID: 19963474 [TBL] [Abstract][Full Text] [Related]
3. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing. Venkataraman P; Browd SR; Lutz BR J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135 [TBL] [Abstract][Full Text] [Related]
4. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve. Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676 [TBL] [Abstract][Full Text] [Related]
5. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone. Medow JE; Luzzio CC J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323 [TBL] [Abstract][Full Text] [Related]
6. Testing the hydrocephalus shunt valve. Watts C; Keith HD Childs Brain; 1983; 10(4):217-28. PubMed ID: 6884124 [TBL] [Abstract][Full Text] [Related]
7. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation. Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991 [TBL] [Abstract][Full Text] [Related]
9. Is there a reasonable differential indication for different hydrocephalus shunt systems? Trost HA Childs Nerv Syst; 1995 Apr; 11(4):189-92. PubMed ID: 7621478 [TBL] [Abstract][Full Text] [Related]
10. Design of a piezoelectrically actuated hydrocephalus shunt valve. Salih O; Messina M; Al-Jumeily D Med Biol Eng Comput; 2023 Sep; 61(9):2281-2290. PubMed ID: 36995551 [TBL] [Abstract][Full Text] [Related]
11. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure. Aihara Y; Shoji I; Okada Y J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212 [TBL] [Abstract][Full Text] [Related]
12. The Delta Valve: a physiologic shunt system. Watson DA Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model. Gorelick NL; Serra R; Iyer R; Um R; Grewal A; Monroe A; Antoine H; Beharry K; Cecia A; Kroll F; Ishida W; Perdomo-Pantoja A; Xu R; Loth F; Ye X; Suk I; Tyler B; Bayston R; Luciano MG Neurosurgery; 2020 Oct; 87(5):1046-1054. PubMed ID: 32521017 [TBL] [Abstract][Full Text] [Related]
14. Who Needs a Revision? 20 Years of Cambridge Shunt Lab. Czosnyka Z; Czosnyka M; Pickard JD; Chari A Acta Neurochir Suppl; 2016; 122():347-51. PubMed ID: 27165934 [TBL] [Abstract][Full Text] [Related]
15. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system. Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558 [TBL] [Abstract][Full Text] [Related]
16. Simulation of existing and future electromechanical shunt valves in combination with a model for brain fluid dynamics. Elixmann IM; Walter M; Kiefer M; Leonhardt S Acta Neurochir Suppl; 2012; 113():77-81. PubMed ID: 22116428 [TBL] [Abstract][Full Text] [Related]
17. Hydrodynamic properties of the Certas hydrocephalus shunt. Czosnyka Z; Pickard JD; Czosnyka M J Neurosurg Pediatr; 2013 Feb; 11(2):198-204. PubMed ID: 23215818 [TBL] [Abstract][Full Text] [Related]
18. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve. Frim DM; Lathrop D Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059 [TBL] [Abstract][Full Text] [Related]
19. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus. Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233 [TBL] [Abstract][Full Text] [Related]
20. A theoretical study of new types of valve shunts for cerebrospinal fluid. Bosio A ASAIO Trans; 1991; 37(3):M289-90. PubMed ID: 1751154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]