These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of Americium-241 and humic substances on Photobacterium phosphoreum: bioluminescence and diffuse reflectance FTIR spectroscopic studies. Kamnev AA; Tugarova AV; Selivanova MA; Tarantilis PA; Polissiou MG; Kudryasheva NS Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():171-5. PubMed ID: 22795580 [TBL] [Abstract][Full Text] [Related]
3. Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions. Fedorova E; Kudryasheva N; Kuznetsov A; Mogil'naya O; Stom D J Photochem Photobiol B; 2007 Sep; 88(2-3):131-6. PubMed ID: 17716903 [TBL] [Abstract][Full Text] [Related]
4. Effect of americium-241 on luminous bacteria. Role of peroxides. Alexandrova M; Rozhko T; Vydryakova G; Kudryasheva N J Environ Radioact; 2011 Apr; 102(4):407-11. PubMed ID: 21388726 [TBL] [Abstract][Full Text] [Related]
5. Effect of humic substances on toxicity of inorganic oxidizer bioluminescent monitoring. Tarasova AS; Stom DI; Kudryasheva NS Environ Toxicol Chem; 2011 May; 30(5):1013-7. PubMed ID: 21309025 [TBL] [Abstract][Full Text] [Related]
6. Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances. Tarasova AS; Kislan SL; Fedorova ES; Kuznetsov AM; Mogilnaya OA; Stom DI; Kudryasheva NS J Photochem Photobiol B; 2012 Dec; 117():164-70. PubMed ID: 23123596 [TBL] [Abstract][Full Text] [Related]
7. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor. Camanzi L; Bolelli L; Maiolini E; Girotti S; Matteuzzi D Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881 [TBL] [Abstract][Full Text] [Related]
8. Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process. He R; Tian BH; Zhang QQ; Zhang HT Waste Manag; 2015 Apr; 38():232-9. PubMed ID: 25660905 [TBL] [Abstract][Full Text] [Related]
9. [Growth and bioluminescence of luminous bacteria under the action of aflatoxin B1 before and after its treatment with nanodiamonds]. Mogil'naia OA; Puzyr' AP; Bondar' VS Prikl Biokhim Mikrobiol; 2010; 46(1):40-4. PubMed ID: 20198915 [TBL] [Abstract][Full Text] [Related]
10. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Jung AV; Frochot C; Villieras F; Lartiges BS; Parant S; Viriot ML; Bersillon JL Chemosphere; 2010 Jun; 80(3):228-34. PubMed ID: 20451951 [TBL] [Abstract][Full Text] [Related]
11. Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species. Rozhko TV; Kolesnik OV; Badun GA; Stom DI; Kudryasheva NS Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947870 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of dissolved humic substances by fungi. Collado S; Oulego P; Suárez-Iglesias O; Díaz M Appl Microbiol Biotechnol; 2018 Apr; 102(8):3497-3511. PubMed ID: 29502178 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence and bioluminescence analysis of sequential UV-biological degradation of p-cresol in water. Tchaikovskaya O; Sokolova I; Svetlichnyi V; Karetnikova E; Fedorova E; Kudryasheva N Luminescence; 2007; 22(1):29-34. PubMed ID: 16886235 [TBL] [Abstract][Full Text] [Related]
14. Improvements in the two-dimensional nuclear magnetic resonance spectroscopy of humic substances. Simpson AJ; Salloum MJ; Kingery WL; Hatcher PG J Environ Qual; 2002; 31(2):388-92. PubMed ID: 11931425 [TBL] [Abstract][Full Text] [Related]
15. Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and Ferrate(VI). Horst C; Sharma VK; Baum JC; Sohn M Chemosphere; 2013 Feb; 90(6):2013-9. PubMed ID: 23211321 [TBL] [Abstract][Full Text] [Related]
16. Analysis of river water by bioluminescent biotests. Kuznetsov AM; Rodicheva EK; Medvedeva SE Luminescence; 1999; 14(5):263-5. PubMed ID: 10512990 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of the dynamics of bioluminescence intensity of luminous bacteria Photobacterium phosphoreum]. Drozdov AV; Gromozova EN; Gretsky IA Biofizika; 2015; 60(2):316-21. PubMed ID: 26016027 [TBL] [Abstract][Full Text] [Related]
18. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Kudryasheva NS; Tarasova AS Environ Sci Pollut Res Int; 2015 Jan; 22(1):155-67. PubMed ID: 25146119 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation. Rodríguez FJ; Schlenger P; García-Valverde M Sci Total Environ; 2014 Apr; 476-477():731-42. PubMed ID: 24364994 [TBL] [Abstract][Full Text] [Related]
20. Colloid-borne americium migration in Gorleben groundwater: significance of iron secondary phase transformation. Schäfer T; Artinger R; Dardenne K; Bauer A; Schuessler W; Kim JI Environ Sci Technol; 2003 Apr; 37(8):1528-34. PubMed ID: 12731834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]