BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21174456)

  • 1. Size-dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium.
    Dehner CA; Barton L; Maurice PA; DuBois JL
    Environ Sci Technol; 2011 Feb; 45(3):977-83. PubMed ID: 21174456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic microbial Fe acquisition from ferrihydrite nanoparticles: effects of crystalline order, siderophores, and alginate.
    Kuhn KM; DuBois JL; Maurice PA
    Environ Sci Technol; 2014; 48(15):8664-70. PubMed ID: 24978298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina.
    Dehner CA; Awaya JD; Maurice PA; DuBois JL
    Appl Environ Microbiol; 2010 Apr; 76(7):2041-8. PubMed ID: 20118367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size effects on adsorption of hematite nanoparticles on E. coli cells.
    Zhang W; Rittmann B; Chen Y
    Environ Sci Technol; 2011 Mar; 45(6):2172-8. PubMed ID: 21341780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water.
    Shen YF; Tang J; Nie ZH; Wang YD; Ren Y; Zuo L
    Bioresour Technol; 2009 Sep; 100(18):4139-46. PubMed ID: 19414249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exogenous reductant on growth and iron mobilization from ferrihydrite by the Pseudomonas mendocina ymp strain.
    Dhungana S; Anthony CR; Hersman LE
    Appl Environ Microbiol; 2007 May; 73(10):3428-30. PubMed ID: 17384310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.
    Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C
    J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent Pb sorption to nanohematite in the presence and absence of a microbial siderophore.
    Barton LE; Grant KE; Kosel T; Quicksall AN; Maurice PA
    Environ Sci Technol; 2011 Apr; 45(8):3231-7. PubMed ID: 21294541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suspension of Fe(3)O(4) nanoparticles stabilized by chitosan and o-carboxymethylchitosan.
    Zhu A; Yuan L; Liao T
    Int J Pharm; 2008 Feb; 350(1-2):361-8. PubMed ID: 17931808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands.
    Barbeau K; Rue EL; Bruland KW; Butler A
    Nature; 2001 Sep; 413(6854):409-13. PubMed ID: 11574885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.
    Marusenko Y; Shipp J; Hamilton GA; Morgan JL; Keebaugh M; Hill H; Dutta A; Zhuo X; Upadhyay N; Hutchings J; Herckes P; Anbar AD; Shock E; Hartnett HE
    Environ Pollut; 2013 Mar; 174():150-6. PubMed ID: 23262070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis.
    Iida H; Takayanagi K; Nakanishi T; Osaka T
    J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores.
    Duckworth OW; Bargar JR; Sposito G
    Biometals; 2009 Aug; 22(4):605-13. PubMed ID: 19238560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sacrificial templating synthesis of hematite nanochains from [Fe18S25](TETAH)14 nanoribbons: their magnetic, electrochemical, and photocatalytic properties.
    Zhou YX; Yao HB; Yao WT; Zhu Z; Yu SH
    Chemistry; 2012 Apr; 18(16):5073-9. PubMed ID: 22407781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.
    Park HY; Schadt MJ; Wang L; Lim II; Njoki PN; Kim SH; Jang MY; Luo J; Zhong CJ
    Langmuir; 2007 Aug; 23(17):9050-6. PubMed ID: 17629315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.