These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2117471)

  • 1. Block-units method for conformational calculations of large nucleic acid chains. I. Block-units approximation of atomic structure and conformational energy of polynucleotides.
    Vorobjev YuN
    Biopolymers; 1990; 29(12-13):1503-18. PubMed ID: 2117471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Method for conformational calculations of large fragments of nucleic acids. III. Long range interactions].
    Vorob'ev IuN
    Mol Biol (Mosk); 1983; 17(2):257-70. PubMed ID: 6855755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Method for conformation calculations of large fragments of nucleic acids. I. Models for conformational energy surface ribose and 2'-deoxyribose].
    Vorob'ev IuN
    Mol Biol (Mosk); 1981; 15(3):517-25. PubMed ID: 6789143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Block-units method for conformational calculations of large nucleic acid chains. II. The two-hierarchical approach and its application to conformational arrangement of the unusual T psi C loop of rabbit tRNA(Val).
    Vorobjev YN
    Biopolymers; 1990; 29(12-13):1519-29. PubMed ID: 2386804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Method of conformational calculations of large fragments of nucleic acids. IV. Comparative calculations of dinucleotides by the fragment and atom-atom methods].
    Vorob'ev IuN
    Mol Biol (Mosk); 1983; 17(2):271-8. PubMed ID: 6574311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The influence of complementary base pair interactions on secondary structure formation and conformational transitions in polynucleotides].
    Khutorskii VE; Poltev VI
    Mol Biol (Mosk); 1975; 9(5):747-51. PubMed ID: 1214813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Theoretical conformational analysis of doulble-stranded polynucleotides].
    KhutorskiÄ­ VE; Poltev VI
    Biofizika; 1976; 21(2):201-7. PubMed ID: 1268263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone conformations in secondary and tertiary structural units of nucleic acids. Constraint in the phosphodiester conformation.
    Yathindra N; Sundaralingam M
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3325-8. PubMed ID: 4530303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Contribution of individual structural components to stabilization of the secondary structure of double-helical polynucleotides].
    KhutorskiÄ­ VE; Poltev VI
    Biofizika; 1978; 23(1):37-42. PubMed ID: 623820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational geometry and vibrational frequencies of nucleic acid chains.
    Brown EB; Peticolas WL
    Biopolymers; 1975 Jun; 14(6):1259-71. PubMed ID: 1164547
    [No Abstract]   [Full Text] [Related]  

  • 11. Lattice vibrational modes of poly(rU) and poly(rA).
    Eyster JM; Prohofsky EW
    Biopolymers; 1974 Dec; 13(12):2505-26. PubMed ID: 4441608
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformational studies on polynucleotide chains. I. Hartree-Fock energies and description of nonbonded interactions with Lennard-Jones potentials.
    Matsuoka O; Tosi C; Clementi E
    Biopolymers; 1978 Jan; 17(1):33-49. PubMed ID: 623883
    [No Abstract]   [Full Text] [Related]  

  • 13. [A method of conformation calculations of large nucleic acid fragments. V. Conformation rearrangements of the modified T psi C-loop of phenylalanyl tRNA].
    Vorob'ev IuN
    Mol Biol (Mosk); 1984; 18(4):933-44. PubMed ID: 6568404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of conformation characteristics of "X-form" of alternating polynucleotides by the method of slow 1H----3H transition].
    Lesnik EA; Agranovich IM; Maslova RN; VarshavskiÄ­ IaM
    Mol Biol (Mosk); 1987; 21(5):1352-9. PubMed ID: 3683378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polynucleotides. 13. Stoichiometric and thermodynamic studies of polynucleotide helices with non-complementary residues.
    Lomant AJ; Fresco JR
    Biopolymers; 1973; 12(8):1889-903. PubMed ID: 4733714
    [No Abstract]   [Full Text] [Related]  

  • 16. Conformational studies of polynucleotides. I. Unperturbed dimensions in the approximation of independent units.
    Scott RA
    Biopolymers; 1968 Apr; 6(4):625-8. PubMed ID: 5644791
    [No Abstract]   [Full Text] [Related]  

  • 17. The spatial configuration of ordered polynucleotide chains. I. Helix formation and base stacking.
    Olson WK
    Biopolymers; 1976 May; 15(5):859-78. PubMed ID: 1260107
    [No Abstract]   [Full Text] [Related]  

  • 18. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides.
    Pullman B; Perahia D; Saran A
    Biochim Biophys Acta; 1972 Apr; 269(1):1-14. PubMed ID: 5026319
    [No Abstract]   [Full Text] [Related]  

  • 20. Conformational studies on polynucleotide chains. III. Intramolecular energy maps and comparison with experiments.
    Tosi C; Clementi E; Matsuoka O
    Biopolymers; 1978 Jan; 17(1):67-84. PubMed ID: 623885
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.