These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 21175206)
21. Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Goi A; Trapido M Environ Technol; 2004 Feb; 25(2):155-64. PubMed ID: 15116873 [TBL] [Abstract][Full Text] [Related]
22. Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles. Pöschl U J Aerosol Med; 2002; 15(2):203-12. PubMed ID: 12184870 [TBL] [Abstract][Full Text] [Related]
23. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons--a modelling approach. Lammel G; Sehili AM; Bond TC; Feichter J; Grassl H Chemosphere; 2009 Jun; 76(1):98-106. PubMed ID: 19275951 [TBL] [Abstract][Full Text] [Related]
25. A thermodynamics-based estimation model for adsorption of organic compounds by carbonaceous materials in environmental sorbents. van Noort PC Environ Toxicol Chem; 2003 Jun; 22(6):1179-88. PubMed ID: 12785572 [TBL] [Abstract][Full Text] [Related]
26. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Brändli RC; Hartnik T; Henriksen T; Cornelissen G Chemosphere; 2008 Dec; 73(11):1805-10. PubMed ID: 18842282 [TBL] [Abstract][Full Text] [Related]
27. Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter. Portet-Koltalo F; Oukebdane K; Dionnet F; Desbène PL Anal Chim Acta; 2009 Sep; 651(1):48-56. PubMed ID: 19733734 [TBL] [Abstract][Full Text] [Related]
28. Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Callén MS; de la Cruz MT; López JM; Murillo R; Navarro MV; Mastral AM Chemosphere; 2008 Nov; 73(8):1357-65. PubMed ID: 18692862 [TBL] [Abstract][Full Text] [Related]
29. Immunization with soot from a non-combustion process provokes formation of antibodies against polycyclic aromatic hydrocarbons. Matschulat D; Prestel H; Haider F; Niessner R; Knopp D J Immunol Methods; 2006 Mar; 310(1-2):159-70. PubMed ID: 16499922 [TBL] [Abstract][Full Text] [Related]
30. Reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of polycyclic aromatic hydrocarbon surfaces. Gross S; Bertram AK J Phys Chem A; 2008 Apr; 112(14):3104-13. PubMed ID: 18311955 [TBL] [Abstract][Full Text] [Related]
31. The photoenhanced aging process of soot by the heterogeneous ozonization reaction. Han C; Liu Y; He H Phys Chem Chem Phys; 2016 Sep; 18(35):24401-7. PubMed ID: 27534511 [TBL] [Abstract][Full Text] [Related]
32. Mineral oxides change the atmospheric reactivity of soot: NO2 uptake under dark and UV irradiation conditions. Romanias MN; Bedjanian Y; Zaras AM; Andrade-Eiroa A; Shahla R; Dagaut P; Philippidis A J Phys Chem A; 2013 Dec; 117(48):12897-911. PubMed ID: 24188183 [TBL] [Abstract][Full Text] [Related]
33. The oxidized soot surface: theoretical study of desorption mechanisms involving oxygenated functionalities and comparison with temperature programed desorption experiments. Barco G; Maranzana A; Ghigo G; Causà M; Tonachini G J Chem Phys; 2006 Nov; 125(19):194706. PubMed ID: 17129149 [TBL] [Abstract][Full Text] [Related]
34. Addition of one and two units of C2H to styrene: a theoretical study of the C10H9 and C12H9 systems and implications toward growth of polycyclic aromatic hydrocarbons at low temperatures. Landera A; Kaiser RI; Mebel AM J Chem Phys; 2011 Jan; 134(2):024302. PubMed ID: 21241094 [TBL] [Abstract][Full Text] [Related]
35. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study. Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277 [TBL] [Abstract][Full Text] [Related]
36. Theoretical study of aza-polycyclic aromatic hydrocarbons (aza-PAHs), modelling carbocations from oxidized metabolites and their covalent adducts with representative nucleophiles. Borosky GL; Laali KK Org Biomol Chem; 2005 Apr; 3(7):1180-8. PubMed ID: 15785805 [TBL] [Abstract][Full Text] [Related]
37. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. Nam JJ; Sweetman AJ; Jones KC J Environ Monit; 2009 Jan; 11(1):45-8. PubMed ID: 19137138 [TBL] [Abstract][Full Text] [Related]
38. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Kulik N; Goi A; Trapido M; Tuhkanen T J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683 [TBL] [Abstract][Full Text] [Related]
39. On determining soot maturity: A review of the role of microscopy- and spectroscopy-based techniques. Baldelli A; Trivanovic U; Sipkens TA; Rogak SN Chemosphere; 2020 Aug; 252():126532. PubMed ID: 32229356 [TBL] [Abstract][Full Text] [Related]
40. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]