These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 21175357)
1. Efficacy of Tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. Borgmann K; Rao KS; Labhasetwar V; Ghorpade A AIDS Res Hum Retroviruses; 2011 Aug; 27(8):853-62. PubMed ID: 21175357 [TBL] [Abstract][Full Text] [Related]
2. HIV regulation of the IL-7R: a viral mechanism for enhancing HIV-1 replication in human macrophages in vitro. Zhang M; Drenkow J; Lankford CS; Frucht DM; Rabin RL; Gingeras TR; Venkateshan C; Schwartzkopff F; Clouse KA; Dayton AI J Leukoc Biol; 2006 Jun; 79(6):1328-38. PubMed ID: 16614257 [TBL] [Abstract][Full Text] [Related]
3. Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Mengozzi M; De Filippi C; Transidico P; Biswas P; Cota M; Ghezzi S; Vicenzi E; Mantovani A; Sozzani S; Poli G Blood; 1999 Mar; 93(6):1851-7. PubMed ID: 10068657 [TBL] [Abstract][Full Text] [Related]
4. Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages. Kang W; Marasco WA; Tong HI; Byron MM; Wu C; Shi Y; Sun S; Sun Y; Lu Y J Neuroinflammation; 2014 Nov; 11():195. PubMed ID: 25416164 [TBL] [Abstract][Full Text] [Related]
5. Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Khoury G; Ewart G; Luscombe C; Miller M; Wilkinson J Antimicrob Agents Chemother; 2010 Feb; 54(2):835-45. PubMed ID: 19995924 [TBL] [Abstract][Full Text] [Related]
6. Selectively reduced tat mRNA heralds the decline in productive human immunodeficiency virus type 1 infection in monocyte-derived macrophages. Sonza S; Mutimer HP; O'Brien K; Ellery P; Howard JL; Axelrod JH; Deacon NJ; Crowe SM; Purcell DF J Virol; 2002 Dec; 76(24):12611-21. PubMed ID: 12438587 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of HIV replication and macrophage colony-stimulating factor production in human macrophages by antiretroviral agents. Kutza J; Fields K; Grimm TA; Clouse KA AIDS Res Hum Retroviruses; 2002 Jun; 18(9):619-25. PubMed ID: 12079557 [TBL] [Abstract][Full Text] [Related]
8. Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Kanmogne GD; Singh S; Roy U; Liu X; McMillan J; Gorantla S; Balkundi S; Smith N; Alnouti Y; Gautam N; Zhou Y; Poluektova L; Kabanov A; Bronich T; Gendelman HE Int J Nanomedicine; 2012; 7():2373-88. PubMed ID: 22661891 [TBL] [Abstract][Full Text] [Related]
9. Chemokine CXCL8 promotes HIV-1 replication in human monocyte-derived macrophages and primary microglia via nuclear factor-κB pathway. Mamik MK; Ghorpade A PLoS One; 2014; 9(3):e92145. PubMed ID: 24662979 [TBL] [Abstract][Full Text] [Related]
10. Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. Zhang M; Li X; Pang X; Ding L; Wood O; Clouse KA; Hewlett I; Dayton AI J Biomed Sci; 2002; 9(2):133-9. PubMed ID: 11914580 [TBL] [Abstract][Full Text] [Related]
13. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles. Peetla C; Rao KS; Labhasetwar V Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206 [TBL] [Abstract][Full Text] [Related]
14. Effects of Amprenavir on HIV-1 Maturation, Production and Infectivity Following Drug Withdrawal in Chronically-Infected Monocytes/Macrophages. Borrajo A; Ranazzi A; Pollicita M; Bruno R; Modesti A; Alteri C; Perno CF; Svicher V; Aquaro S Viruses; 2017 Sep; 9(10):. PubMed ID: 28956865 [TBL] [Abstract][Full Text] [Related]
15. An Elvitegravir Nanoformulation Crosses the Blood-Brain Barrier and Suppresses HIV-1 Replication in Microglia. Gong Y; Zhi K; Nagesh PKB; Sinha N; Chowdhury P; Chen H; Gorantla S; Yallapu MM; Kumar S Viruses; 2020 May; 12(5):. PubMed ID: 32443728 [TBL] [Abstract][Full Text] [Related]
16. Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy. Gill AJ; Kovacsics CE; Vance PJ; Collman RG; Kolson DL J Virol; 2015 Oct; 89(20):10656-67. PubMed ID: 26269184 [TBL] [Abstract][Full Text] [Related]
17. Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. Spitzenberger TJ; Heilman D; Diekmann C; Batrakova EV; Kabanov AV; Gendelman HE; Elmquist WF; Persidsky Y J Cereb Blood Flow Metab; 2007 May; 27(5):1033-42. PubMed ID: 17063148 [TBL] [Abstract][Full Text] [Related]
18. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Rao KS; Reddy MK; Horning JL; Labhasetwar V Biomaterials; 2008 Nov; 29(33):4429-38. PubMed ID: 18760470 [TBL] [Abstract][Full Text] [Related]
19. IL-13 acts on macrophages to block the completion of reverse transcription, inhibit virus production, and reduce virus infectivity. Montaner LJ; Bailer RT; Gordon S J Leukoc Biol; 1997 Jul; 62(1):126-32. PubMed ID: 9226003 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Aquaro S; Borrajo A; Pellegrino M; Svicher V Virulence; 2020 Dec; 11(1):400-413. PubMed ID: 32375558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]