BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21176402)

  • 1. Multitract microtransplantation increases the yield of DARPP-32-positive embryonic striatal cells in a rodent model of Huntington's disease.
    Jiang W; Büchele F; Papazoglou A; Döbrössy M; Nikkhah G
    Cell Transplant; 2011; 20(10):1515-27. PubMed ID: 21176402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caspase inhibition increases embryonic striatal graft survival.
    Mundt-Petersen U; Petersén A; Emgård M; Dunnett SB; Brundin P
    Exp Neurol; 2000 Jul; 164(1):112-20. PubMed ID: 10877921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtransplantation of whole ganglionic eminence cells ameliorates motor deficit, enlarges the volume of grafts, and prolongs survival in a rat model of Huntington's disease.
    Zhu M; Shu K; Wang H; Li X; Xiao Q; Chan W; Emmanuel B; Jiang W; Lei T
    J Neurosci Res; 2013 Dec; 91(12):1563-71. PubMed ID: 24105649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease.
    Watts C; Brasted PJ; Dunnett SB
    Exp Neurol; 2000 May; 163(1):85-97. PubMed ID: 10785447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease.
    Döbrössy MD; Dunnett SB
    Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of embryonic donor age and dissection on the DARPP-32 content of cell suspensions used for intrastriatal transplantation.
    Watts C; Dunnett SB; Rosser AE
    Exp Neurol; 1997 Nov; 148(1):271-80. PubMed ID: 9398469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of human striatal DARPP-32 neurons in fetuses and following xenografting to the adult rat brain.
    Naimi S; Jeny R; Hantraye P; Peschanski M; Riche D
    Exp Neurol; 1996 Jan; 137(1):15-25. PubMed ID: 8566206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces.
    Watts C; Brasted PJ; Dunnett SB
    Cell Transplant; 2000; 9(3):395-407. PubMed ID: 10972338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease.
    Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B
    Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted.
    Watts C; McNamara IR; Dunnett SB
    Cell Transplant; 2000; 9(1):65-72. PubMed ID: 10784068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease.
    Hussain N; Flumerfelt BA; Rajakumar N
    Neurobiol Dis; 2004 Apr; 15(3):648-53. PubMed ID: 15056473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP-32 striatal progenitors within the graft.
    Ferrari D; Sanchez-Pernaute R; Lee H; Studer L; Isacson O
    Eur J Neurosci; 2006 Oct; 24(7):1885-96. PubMed ID: 17067292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for target-specific nerve fiber outgrowth from subpopulations of grafted dopaminergic neurons: a retrograde tracing study using in oculo and intracranial grafting.
    Törnqvist N; Björklund L; Strömberg I
    Exp Neurol; 2001 Jun; 169(2):329-39. PubMed ID: 11358446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention.
    Watts C; Dunnett SB
    J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence.
    Olsson M; Campbell K; Wictorin K; Björklund A
    Neuroscience; 1995 Dec; 69(4):1169-82. PubMed ID: 8848105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.