These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21176402)
1. Multitract microtransplantation increases the yield of DARPP-32-positive embryonic striatal cells in a rodent model of Huntington's disease. Jiang W; Büchele F; Papazoglou A; Döbrössy M; Nikkhah G Cell Transplant; 2011; 20(10):1515-27. PubMed ID: 21176402 [TBL] [Abstract][Full Text] [Related]
3. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743 [TBL] [Abstract][Full Text] [Related]
4. Microtransplantation of whole ganglionic eminence cells ameliorates motor deficit, enlarges the volume of grafts, and prolongs survival in a rat model of Huntington's disease. Zhu M; Shu K; Wang H; Li X; Xiao Q; Chan W; Emmanuel B; Jiang W; Lei T J Neurosci Res; 2013 Dec; 91(12):1563-71. PubMed ID: 24105649 [TBL] [Abstract][Full Text] [Related]
5. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease. Nakao N; Grasbon-Frodl EM; Widner H; Brundin P Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865 [TBL] [Abstract][Full Text] [Related]
6. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease. Watts C; Brasted PJ; Dunnett SB Exp Neurol; 2000 May; 163(1):85-97. PubMed ID: 10785447 [TBL] [Abstract][Full Text] [Related]
7. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation. Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752 [TBL] [Abstract][Full Text] [Related]
8. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Döbrössy MD; Dunnett SB Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116 [TBL] [Abstract][Full Text] [Related]
9. Effect of embryonic donor age and dissection on the DARPP-32 content of cell suspensions used for intrastriatal transplantation. Watts C; Dunnett SB; Rosser AE Exp Neurol; 1997 Nov; 148(1):271-80. PubMed ID: 9398469 [TBL] [Abstract][Full Text] [Related]
10. Ontogeny of human striatal DARPP-32 neurons in fetuses and following xenografting to the adult rat brain. Naimi S; Jeny R; Hantraye P; Peschanski M; Riche D Exp Neurol; 1996 Jan; 137(1):15-25. PubMed ID: 8566206 [TBL] [Abstract][Full Text] [Related]
11. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces. Watts C; Brasted PJ; Dunnett SB Cell Transplant; 2000; 9(3):395-407. PubMed ID: 10972338 [TBL] [Abstract][Full Text] [Related]
12. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322 [TBL] [Abstract][Full Text] [Related]
13. Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted. Watts C; McNamara IR; Dunnett SB Cell Transplant; 2000; 9(1):65-72. PubMed ID: 10784068 [TBL] [Abstract][Full Text] [Related]
14. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease. Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527 [TBL] [Abstract][Full Text] [Related]
15. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease. Hussain N; Flumerfelt BA; Rajakumar N Neurobiol Dis; 2004 Apr; 15(3):648-53. PubMed ID: 15056473 [TBL] [Abstract][Full Text] [Related]
16. Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP-32 striatal progenitors within the graft. Ferrari D; Sanchez-Pernaute R; Lee H; Studer L; Isacson O Eur J Neurosci; 2006 Oct; 24(7):1885-96. PubMed ID: 17067292 [TBL] [Abstract][Full Text] [Related]
17. Evidence for target-specific nerve fiber outgrowth from subpopulations of grafted dopaminergic neurons: a retrograde tracing study using in oculo and intracranial grafting. Törnqvist N; Björklund L; Strömberg I Exp Neurol; 2001 Jun; 169(2):329-39. PubMed ID: 11358446 [TBL] [Abstract][Full Text] [Related]
18. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention. Watts C; Dunnett SB J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122 [TBL] [Abstract][Full Text] [Related]
19. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Vazey EM; Chen K; Hughes SM; Connor B Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705 [TBL] [Abstract][Full Text] [Related]
20. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Olsson M; Campbell K; Wictorin K; Björklund A Neuroscience; 1995 Dec; 69(4):1169-82. PubMed ID: 8848105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]