These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21176987)
1. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. Gamero A; Manzanares P; Querol A; Belloch C Int J Food Microbiol; 2011 Jan; 145(1):92-7. PubMed ID: 21176987 [TBL] [Abstract][Full Text] [Related]
2. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. Porter TJ; Divol B; Setati ME Int J Food Microbiol; 2019 Feb; 290():273-287. PubMed ID: 30412799 [TBL] [Abstract][Full Text] [Related]
3. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Pardo E; Rico J; Gil JV; Orejas M Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186 [TBL] [Abstract][Full Text] [Related]
4. The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines. Kanter JP; Benito S; Brezina S; Beisert B; Fritsch S; Patz CD; Rauhut D Food Chem X; 2020 Mar; 5():100072. PubMed ID: 31891155 [TBL] [Abstract][Full Text] [Related]
5. Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids. Gamero A; Hernández-Orte P; Querol A; Ferreira V Int J Food Microbiol; 2011 May; 147(1):33-44. PubMed ID: 21474195 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. King A; Richard Dickinson J Yeast; 2000 Apr; 16(6):499-506. PubMed ID: 10790686 [TBL] [Abstract][Full Text] [Related]
7. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Belloch C; Orlic S; Barrio E; Querol A Int J Food Microbiol; 2008 Feb; 122(1-2):188-95. PubMed ID: 18222562 [TBL] [Abstract][Full Text] [Related]
8. Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. González SS; Gallo L; Climent MA; Barrio E; Querol A Int J Food Microbiol; 2007 May; 116(1):11-8. PubMed ID: 17346840 [TBL] [Abstract][Full Text] [Related]
9. Isolation and Investigation of Potential Non- Lee SB; Park HD Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33050030 [TBL] [Abstract][Full Text] [Related]
10. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes. Bellon JR; Yang F; Day MP; Inglis DL; Chambers PJ Appl Microbiol Biotechnol; 2015 Oct; 99(20):8597-609. PubMed ID: 26099331 [TBL] [Abstract][Full Text] [Related]
11. Study of beta-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. Fia G; Giovani G; Rosi I J Appl Microbiol; 2005; 99(3):509-17. PubMed ID: 16108792 [TBL] [Abstract][Full Text] [Related]
12. Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. Pérez D; Denat M; Heras JM; Guillamón JM; Ferreira V; Querol A Int J Food Microbiol; 2022 Mar; 365():109554. PubMed ID: 35093767 [TBL] [Abstract][Full Text] [Related]
13. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Tronchoni J; Gamero A; Arroyo-López FN; Barrio E; Querol A Int J Food Microbiol; 2009 Sep; 134(3):237-43. PubMed ID: 19632733 [TBL] [Abstract][Full Text] [Related]
15. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine. Blazquez Rojas I; Smith PA; Bartowsky EJ World J Microbiol Biotechnol; 2012 Dec; 28(12):3311-21. PubMed ID: 22878903 [TBL] [Abstract][Full Text] [Related]
16. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates. López MC; Mateo JJ; Maicas S J Food Sci; 2015 Aug; 80(8):C1696-704. PubMed ID: 26126488 [TBL] [Abstract][Full Text] [Related]
17. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. Carrau FM; Medina K; Boido E; Farina L; Gaggero C; Dellacassa E; Versini G; Henschke PA FEMS Microbiol Lett; 2005 Feb; 243(1):107-15. PubMed ID: 15668008 [TBL] [Abstract][Full Text] [Related]
18. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids. Peris D; Pérez-Través L; Belloch C; Querol A Food Microbiol; 2016 Feb; 53(Pt B):31-40. PubMed ID: 26678127 [TBL] [Abstract][Full Text] [Related]
19. Exceptional fermentation characteristics of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Gangl H; Batusic M; Tscheik G; Tiefenbrunner W; Hack C; Lopandic K N Biotechnol; 2009 Apr; 25(4):244-51. PubMed ID: 19026772 [TBL] [Abstract][Full Text] [Related]
20. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Sun SY; Gong HS; Jiang XM; Zhao YP Food Microbiol; 2014 Dec; 44():15-23. PubMed ID: 25084640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]